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Abstract 

It is of great interest to develop and utilize a high surface area material with 

optimized hydrogen sorption properties. The need for a renewable energy source to 

replace automobile gasoline has become more critical in the past decade. Hydrogen is a 

viable fuel source for automobile usage; however, the question of how hydrogen will be 

safely and efficiently stored still remains. Critical factors for optimum hydrogen storage 

include ambient conditions and low activation temperature for adsorption and desorption 

phenomena. In order for optimum hydrogen adsorption to be achieved, the properties of 

(1) high surface area, (2) optimum hydrogen adsorption energy, and (3) Kubas 

interactions between metals and hydrogen molecules need to be considered. Fullerenes 

have recently become more popular with the discovery and mass production of graphene 

sheets derived from graphite. Graphene is a modified form of graphite that takes the form 

of sheets with less agglomeration than its respective graphitic form. This form has the 

potential for high surface area and storage capabilities. Storage of hydrogen at room 

temperature must be optimized by increasing the surface area and having an adsorption 

enthalpy between 15 – 20 KJ/mol. Graphene (G) sheets and graphene oxide (GO) sheets 

have been utilized as a matrix for hydrogen storage. These materials can also be cross-

linked with organic spacers in order to form a porous framework of higher surface area. 

Metal decorating by calcium and platinum of the G/GO matrix has been used to enhance 

Kubas interactions, adsorption enthalpies, and spillover phenomenon. The use of a 

polymer matrix has also been implemented. Polyaniline is a novel superconducting 



www.manaraa.com

x 

polymer with unique electronic properties. Complexes of Polyaniline with graphene and 

graphene oxide have been investigated for hydrogen storage properties. Graphene and 

graphene oxide surface modification via metal decoration have been investigated in order 

to determine the most efficient synthesis and particle size on the G/GO matrix. 

Characterization by XRD, BET, adsorption enthalpy, PCT, TGA, FT-IR, and TEM/SEM 

(when applicable) were employed to optimize and compare the materials in the effort to 

develop a suitable storage material. 
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Chapter 1. Introduction 

1.1. Hydrogen – The Need for a Renewable Fuel Source 

For the past few decades, the speculation of increasing global temperatures has 

questioned scientists of the effects of air pollution and toxic emissions. Scientists have 

been linking elevated global temperatures to the recent increase in category 4 and 5 

hurricanes in the Atlantic Ocean [1]. Science reports that the strength and duration of 

hurricanes has increased by 50% in the past 3 decades.
 
Kerry Manual, a professor of 

atmospheric science at MIT, has a model that estimates an increase of 5% intensity of 

hurricanes and typhoons for every 1 
°
C rise in sea surface temperature [2]. Experts prove 

that the recent spreading of Malaria and other infectious diseases to never-exposed 

regions is due to an increase in the global temperature [2]. These effects and others like 

severe droughts and extinction of animals have been linked to the fluctuations in the 

global temperature. The planet is seemingly self-destructing with habitats and ecosystems 

being destroyed everywhere. Sustaining our local environments and ecosystems should 

be our top priority. If the causes of this global climate crisis can be reduced or prevented 

all together, then we can further sustain our planet for future generations to come [2].  

Fossil fuel consumption through burning coal and gasoline is the main link to the 

global temperature fluctuations in the recent decades. Figure 1.1 shows the increasing 

consumption of fossil fuels and the rate of the global temperature [3]. This is only a  
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Figure 1.1 Global Mean Temperature (blue) and Fossil Fuel Use (red); Copyright by the 

Ecological Society of America [3] 

correlation and not a direct cause since there are obviously numerous factors that affect 

the global temperature or some may suspect it is the planet taking its course through time 

and the temperature change is “natural. [3]” The burning of coal and oil releases toxins 

such as carbon dioxide and sulfur dioxide into the air which contribute to the greenhouse 

effect. This effect is characterized by these gases causing the sun’s heat to be trapped in 

our atmosphere causing our planet to warm. The sun’s rays are supposed to bounce back 

to space but with our increasing greenhouse gas emissions they are being re-radiated to 

the lower atmosphere and heating the Earth like a car in a parking lot on a hot summer’s 

day. These greenhouse gasses include carbon dioxide, nitrous oxide, ozone, 

chlorofluorocarbons (CFCs), and methane. The most contributing of these is carbon 

dioxide followed by methane [3]. In order to sustain the earth it is vital to prevent these 

greenhouse emissions reaching the atmosphere. Investigating the sources of these gases  
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Figure 1.2 Greenhouse Emissions by Sector in 2004; Reprinted (adapted) with permission 

from Greenhouse Gas Emission Footprints and Energy Use Benchmarks for Eight U.S. 

Cities. Copyright 2012 American Chemical Society [4] 

and what economic sector they derive from can be easily shown in figure 2. This figure 

shows that power stations, industrial processes, and transportation fuels are the top 3 

most contributors of greenhouse gases. All of these burn either gasoline or coal. Almost 

20% of Carbon dioxide emissions derive from transportation fuels while the rest is from 

burning of coal for electricity and in industrial processes. By finding a fuel that can be 

burned instead of coal and gasoline, almost a quarter of the greenhouse emissions can be 

eliminated [4]. The destruction of the environment to obtain coal and gasoline needs to 

also be taken into account. Mountain ranges and national parks are being leveled in order 

to reach coal that is buried deep under the surface. A source of fuel must be used that 

doesn’t require our environment to be destroyed and releases minimal toxins into the 

atmosphere. 

One could deem it necessary to develop a society more dependent on renewable 

fuel sources for environmental or even political concerns. One can reason that the oil 

reserves will eventually dry up one day and implementation of another fuel source needs 
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to be looked at before said day. Experts estimate that the oil reserves have reached their 

peak and are on the downfall now [5]. It is imperative that a renewable and 

environmentally-friendly fuel source be researched and developed. A clean-energy fuel 

source is a source of fuel that emits no greenhouse gases and has no toxic by-products 

when consumed. Hydrogen is a clean-energy fuel because it can be produced by 

electrolysis through water, which is abundant in our oceans, and when burned produces 

no harmful emissions [5].  

Hydrogen can be burned in an internal combustion engine or it can be utilized in a 

fuel cell with oxygen in order to produce electricity and water as its by-products [6]. It 

has been thought to be a viable fuel source for onboard automobile application. Many 

automobile companies, such as Honda, BMW, and Volkswagen, have already 

incorporated hydrogen into the system of their car. Hydrogen can be used as an ignition 

source in complement with gasoline. However, the internal combustion chamber must be 

adjusted in order to accommodate the differences of hydrogen over gasoline [6]. Hybrid 

automobiles have been developed with an increase in miles per gallon due to the high 

efficiency of burning hydrogen over gasoline  [6]. Hydrogen contains about 2.6 times the 

energy per unit mass of gasoline, but it requires almost four times the volume due to its 

low density [6]. Hydrogen needs to be charged into an automobile and stored until its 

time of use. The storage material needs to be reversible and not lose its storage efficiency 

after numerous charges of hydrogen. The difficulties that arise from this volume dilemma 

are discussed in the following sections.  
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1.2. Overview of Current Hydrogen Storage Options 

The most challenging aspect of incorporating hydrogen into an automobile’s 

engine is the storing of it until time of use. Other problems consist of producing hydrogen 

in a low-emission process while also safely storing and handling the gas. The most ideal 

method to produce hydrogen would be to run electrolysis and split water into oxygen and 

hydrogen. However, this process requires electricity which needs to may come from a 

photovoltaic cell or possibly a turbine from a windmill. Once this electricity is produced 

without the burning of fossil fuels, the hydrogen production process consumes a 

negligible amount of non-renewable resources [6]. The problem still lies within the issue 

of safely and efficiently storing hydrogen until its time of use.   

Hydrogen is the lightest element and has an extremely low density of 1 kilogram 

of gas per 11 m
3
 along with a high diffusivity [6]. Due to its small atomic size, hydrogen 

can dissipate through most materials of reasonable thickness; therefore, precautions must 

be taken to minimize this phenomenon. There are currently five methods of hydrogen 

storage [6]:  

1) High pressure gas cylinders  

2) Liquid storage in cryogenic tanks 

3) Physical adsorption in high surface materials 

4) Chemical absorption in metallic materials 

5) Composites of high surface area and metallic materials  

The context of the storing of hydrogen for this thesis is on-board automobile storage. The 

concept is to develop a car that burns only hydrogen gas in an internal combustion 

chamber. Drivers would need to charge their car with hydrogen which would need to be 
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stored until time of use. Safety and volume are the most critical factors that one must 

consider.  

1.2.1. High Pressure Cylinder Storage 

Hydrogen is most commonly stored as a gas in a high-pressure cylinder. This 

cylinder must have high-tensile strength to hold up to about 800 bar of pressure [6]. 

Light-weight materials have been developed to safely store hydrogen in a cylinder at the 

necessary pressure. Materials require a high tensile strength, low density, inert to 

hydrogen, and must not allow hydrogen to diffuse through it. Today, many cylinders are 

made of either austenitic stainless steel or some type of copper alloy [6]. The process of 

pressurizing hydrogen is commonly performed by a mechanical, piston pump. This 

method of storage is dangerous because of the pressure requirement and the 

impracticality of the large cylinder being built inside of an automobile. Dangerous 

situations arise when considering automobile accidents, explosions, and flammability. 

Also, the Department of Energy desires to have at least 8 kg of hydrogen in order to drive 

a car 600 miles. The density of hydrogen at standard temperature and pressure is 0.09 

kilogram per cubic meter. Therefore, in order to have 8 kg of hydrogen on-board, one 

would need a cylinder 88.89 cubic meters large, which would be impractical for on-board 

automobile storage [7]. Due to the low density of hydrogen in its gaseous phase and the 

dangerous high pressures of the cylinders, this option is not viable for on-board 

automobile storage.  
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1.2.2. Liquid Storage at Cryogenic Temperatures 

Hydrogen may also be stored as a liquid at extremely low temperatures commonly 

called cryogenic temperatures. It must be stored at or below the critical temperature of 

hydrogen, which is 33 K. To be stored at ambient (room) pressure, hydrogen must be 

kept at 21.2 K in order to eliminate loss of gas from boil-off. It is estimated that the boil-

off rate for a 50 m
3
cylinder is 0.4% by volume per day. In order to liquefy hydrogen, the 

Linde Cycle is implemented with the use of liquid nitrogen to assist the liquefaction cycle 

[6]. This process is tedious and has a high electrical requirement. Taking into account the 

high electrical requirement and the inevitable boil-off rate, this method is not desirable 

for automobile application. 

1.2.3. Physical Adsorption in High Surface Area Materials 

It is of great interest to develop materials that have the ability to store and release 

gas at ambient temperature and pressures. Physical adsorption (a.k.a. physisorption) is the 

phenomenon of gas molecules physically bonding to the surface of the material. The 

primary forces active in physisorption are weak Van der Waals forces which occur 

between molecules of like or dissimilar identity. Van der Waals forces, also called 

intermolecular forces, account for the forces excluding the forces due to covalent bonds, 

ionic bonds, and electrostatic interactions [8]. The gas molecules interact with two forces 

of the adsorbent, attractive and repulsive forces. These forces are proportional to the 

distance the molecule is to the surface of the adsorbent. Due to these weak forces, 

adsorption only occurs at low temperatures around 298 K when at ambient pressure [9]. 

The most investigated materials for this type of storage are carbon-containing materials. 
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These consist of carbon nanotubes, carbon nanowires, fullerenes, graphene, and 

derivatives of these materials [10]. Aspects that need to be considered for adequate gas 

storage are the pore size, pore distribution, surface area, and adsorption enthalpy. The 

adsorption enthalpy is considered to be the interaction energy between the adsorbent and 

each hydrogen molecule [10]. It is generally assumed that hydrogen only takes part in 

monolayer adsorption, which is adsorption on the outer surface of the adsorbent. 

However, the engineering of materials can form microporous structures that allow 

hydrogen adsorption throughout the layers of the material [6]. At liquid nitrogen 

temperatures (77 K), the storage of hydrogen is directly proportional to the surface area 

of the material. However, at room temperatures this may not be true with numerous 

interactions playing a role in adsorption. The kinetics of this storage option occur very 

rapidly due to the fact that only weak physical forces are taking part in adsorption. 

Advantages of this option are the ambient pressure for uptake and release of hydrogen, 

light-weight material, cost effective material, environmentally friendly, fast kinetics, and 

facile design of the storage system [6]. Critical disadvantages include the low 

temperature for adsorption and low gravimetric density of hydrogen on the surface of 

carbon materials [6]. 

1.2.4. Chemical Absorption of Metals and Metal Hydrides 

Chemical adsorption (a.k.a. chemisorption) refers to the material forming an 

atomic bond with the absorbing hydrogen molecules. This is a chemical reaction that is 

occurring, unlike every other storage option which is simply a physical modification of 

hydrogen [11]. Most chemisorption consists of hydrogen atoms attaching to interstitial 
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sites of a material. Most commonly, metal hydrides possess interstitial sites that attract 

hydrogen atoms for chemical bonding. This bonding occurs at room temperature and 

pressure; however, increased temperature is required to release the hydrogen atoms back 

into their gaseous phase. The desorption temperature corresponds to the enthalpy of the 

metal hydride-hydrogen system. The enthalpy measures the stability of the material, yet it 

needs to be overcome in order to desorb the hydrogen into its molecular phase [6]. It 

should be noted that the absorbed hydrogen are in their atomic state. Standard desorption 

temperatures for metal hydride complexes are no lesser than 250 °C. Metal hydrides also 

oxidize with the atmospheric oxygen and water molecules; therefore, handling of these 

materials must be done in a nitrogen-rich environment like a glove box. Due to the 

chemical bonding occurring within the material, the kinetics of the absorption and 

desorption of hydrogen occur at a slower rate than the other storage options. An 

advantage is that this storage option has the highest storage density of hydrogen. 

Disadvantages include the difficulty of handling the material, high activation 

temperature, and slow kinetics of absorption and releasing of hydrogen [11].  

1.2.5. Composite Polymer/Metal Materials 

Investigation into this field is becoming increasingly popular in order to engineer 

a material with specific advantages from each of the materials within the composite. One 

can look at these composites as a hybrid of materials in order to diminish the 

disadvantages of a material while magnifying the advantages in order to yield an all-

around suitable material for hydrogen storage. Many polymers such as Polyaniline 

(PANI) and Polypyrrole (PPY) are used as substrates for transition metal and metal 
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hydride deposition. PANI’s unique electronic properties as a conducting polymer have 

sparked an interest for its use in hydrogen storage [12]. Metal nanoparticles are the most 

common material to be deposited into a polymer substrate. Extensive research has been 

performed on polymer-metal complexes to investigate their conducting and electronic 

properties for uses in microchips and computers [12]. Composites that utilize carbon-

containing compounds such as graphene and carbon nanotubes as a substrate for metal 

deposition are of new interest for hydrogen storage capabilities. The idea is to engineer a 

hybrid of physisorption and chemisorption materials that complement each other’s 

advantages and disadvantages to yield an ideal storage material. 

1.3. Challenges of Hydrogen Storage and Future Goals 

Hydrogen has the potential to replace gasoline as an automobile fuel and 

dramatically reduce the greenhouse gas emissions of the planet. The rewards of such a 

paradigm shift fuels research groups and government agencies around the world. Once a 

storage material has been found, then it is necessary to start developing the infrastructure 

to accommodate the new hydrogen economy. The infrastructure would need to include 

hydrogen production companies and hydrogen fuelling stations for consumers.  

The primary challenge of hydrogen is its storage until its desired time of use by 

the automobile. As stated previously, storage is difficult due to hydrogen’s small 

molecular size and low density in its gaseous phase. Hydrogen is also extremely reactive 

as a gas at ambient conditions, which is why it is not stored in its molecular form. The 

United States Department of Energy (DOE) has taken responsibility of organizing and 
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implementing goals for research groups to achieve. Criteria that need to be considered for 

adequate storage are [6]: 

1) Gravimetric Hydrogen Storage Capacity 

2) Volumetric Hydrogen Storage Capacity 

3) Storage Design/Material Cost 

4) Fuelling Time/Sorption Kinetics 

5) Cycle Life 

6) Temperature and Pressure of Delivery 

Gravimetric storage capacity is defined as the weight of hydrogen stored in material 

divided by the total mass of the storage system including the stored hydrogen. The 

volumetric storage capacity is defined as the mass of stored hydrogen divided by the total 

volume occupied by the entire storage system. This value is of importance when 

considering the volume constraint for the placement on an automobile. The material costs 

needs to be taken into account in order to sell an automobile that is reasonable for the 

majority of the population to afford to purchase. Fuelling time is critical when thinking 

about the practicality of consumers using fuelling stations in their daily schedule. It 

would be unreasonable to develop a material that requires an hour to transfer hydrogen 

into one’s storage tank. Desorption kinetics are also critical when referring to the time to 

desorb the hydrogen from one’s tank into the internal combustion chamber. A quick 

desorption time allows for a more facile design of the storage system. Cycle life refers to 

the reusability and reversibility of the storage system to repeatedly store and release 

hydrogen without losing its efficiency. The pressure and temperature of delivery are 

important for obvious reasons for the storage system design and safety aspects [13]. DOE 
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has set goals for until the year 2015 for each of the previous criteria which are shown in 

the Table 1.1 [13].  

Table 1.1 DOE 2015 Targets for Hydrogen Storage Criteria [13] 

 

The DOE target goals have been estimated assuming the fuel efficiency of 

hydrogen and the assumed efficiency of available internal combustion chambers suited 

for the burning of hydrogen. The scope of this thesis will focus on maximizing 

gravimetric capacity, cycle life, and temperature of delivery.  

1.4. Overview of Hydrogen Storage Capacities of Various Materials 

This is a very difficult subject to discuss due to the inconsistency of the methods 

of reporting hydrogen storage and the lack of reproducibility amongst publications. Past 

publications have reported gravimetric storage capacities ranging from 10 to 20 weight % 

for Polyaniline and magnesium hydride derivatives, however, those publications have 

been proven erroneous and therefore invalid; errors derive from the sensitivity of 

experimental setup and incorrect reporting of units for hydrogen storage capacities. 

Storage capacities are also reported at various temperatures, for instance at the 

temperature of liquid nitrogen, 77 K, and can be misleading if one does not take notice. A 

Storage Criteria Units 2015

Gravimetric Capacity kg H2 per total kg 0.09

Volumetric Capacity kg H2 per L system 0.081

Fuelling Time min 3

Cycle Life Cycles 1500

Temperature °C [-45,80]

Pressure atm 100

System Cost $ per kg H2 stored 67
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brief overview of the achievements of hydrogen storage in each major field of materials 

is presented in the proceeding sections.  

1.4.1. Metal Hydrides for Hydrogen Storage 

Utilizing metal hydrides and hydride complexes for hydrogen storage has been 

the material of choice for the greater part of the past decade. Metal hydrides, specifically 

magnesium hydride, have the capability of having a storage density of 6.5 H atoms per 

cm
3
 while liquid hydrogen only has a density of 4.2 H atoms per cm

3
 [11]. This 

advantage is promising to reach high gravimetric uptake of hydrogen while maintaining a 

safe vessel. Metal hydride complexes consisting of lithium, aluminum, beryllium, 

magnesium, and sodium make up the majority of this class of materials due to their light 

atomic weight. Hydrogen is absorbed into the material by dissociating on the metal 

surface and hydrogen atoms are then chemically bonded within the interstitial sites of the 

lattice complex [11]. The “bottleneck” with this material is the activation energy required 

to break the interstitial bonds and release the hydrogen atoms from the material. Table 1.1 

shows that the maximum temperature set by the DOE is 80 °C. It has been a tedious 

challenge to lower the temperature below 150 °C for metal hydride complexes [11]. The 

following table shows storage capacities and desorption temperatures of various metal 

hydrides that had the highest potential for adequate hydrogen storage. 
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Table 1.2 Storage Properties of Mg, Na, and Li Hydrides [11] 

 

Table 1.2 proves that metal hydrides have the ability to store high gravimetric 

amounts of hydrogen, but the temperature to release said hydrogen is always above 150 

°C. One must also consider the time of desorption for automobile use. Table 1.2 shows 

various materials that require an hour or two in order to desorb all of the stored hydrogen. 

Irreversibility problems also occur with metal hydrides due to their degradation when 

exposed to compounds such as O2, CO2, NO2, and CO [14]. These compounds are either 

found in the surrounding atmosphere or produced when hydrogen is burned for fuel. 

Usually after 100 cycles, the hydrogen storage capacity is dramatically decreased, 

especially with metal hydrides that contain magnesium due to its strong affinity to 

oxidize [14]. Various oxide catalysts and transition metals additives have been 

investigated to improve the cycle life and decrease the desorption temperature. The 

challenge lies within finding the optimum concentration of catalyst to be added to the 

metal hydride, while also considering the cost of said catalysts [14]. However, achieving 

a desorption temperature below the DOE targets still remains a challenge for these types 

of materials [14].  

Material Desorption Temp. (°C) Kinetics (min) Hyd. Storage (wt.%)

MgH2 300 12.5 7.00

MgH2 - 2 at.% Ni 200 150 6.50

MgH2 - 2 at.% Ti 210 3.35 5.00

NaAlH4 90-150 120 5.00

Mg2Ni 280-330 1 4.10

Li2NH 255 5 6.50
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1.4.2. Porous Organic Polymers for Hydrogen Storage 

Organic polymers have been closely studied for hydrogen storage as an answer to 

the difficulties with metal hydrides. Polymers can overcome the high desorption 

temperature and kinetics problem simply due to their sole physisorption process of 

hydrogen. Since only physical adsorption is occurring, no chemical bonds are being 

formed with the adsorbent and the hydrogen molecule. The weak Van der Waals forces 

that are taking part can easily be broken to release hydrogen while doing so in an 

extremely rapid manner for adsorption and desorption [15]. The dilemma for these 

materials is to engineer a pore size that is adequate to adsorb hydrogen at ambient 

conditions. The pore size must fall in the microporous region of smaller than 10
-6

 meters 

in diameter between walls of the pore [16]. Another critical factor is the specific surface 

area of the material which increases when the pore size decreases [15]. Due to the low 

adsorption enthalpy of organic polymers, low temperatures (77 K) are required in order to 

adsorb a reasonable amount of hydrogen, which happens to be the temperature of liquid 

nitrogen [15]. The specific surface area of a material is also tested at the liquid nitrogen 

temperature due to the increased accuracy at this temperature. The Brunauer–Emmett–

Teller (BET) equation is primarily used with nitrogen adsorption curves in order to 

evaluate the surface area [16]. This equation will be further discussed in proceeding 

chapters. Table 1.3 shows various organic polymers with their respective surface area and 

hydrogen adsorption at 77 K.  
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Table 1.3 BET SSA and Hydrogen Storage of Organic Polymers [16] 

 

Observing the trend in the BET specific surface area (SSA) and hydrogen storage 

columns, one can see that there is a direct relationship between them. This can only be 

said at the liquid nitrogen temperature. Room temperature trends are not as consistent due 

to various interactions occurring within the molecule that are tedious to simulate. The 

hydrogen storage in Table 1.3 is at 77 K. When room temperature is approached, these 

values decrease to a range of 0.1 – 0.3 weight % [17]. This is primarily due to the 

adsorption enthalpy of the material. The adsorption enthalpy of most organic polymer 

materials range from 4 – 7 KJ/mol, but need to be in the range of 15 – 20 KJ/mol if 

hydrogen storage at room temperature is desired [15]. The most common method if 

increasing adsorption enthalpy and hydrogen storage is utilizing the spillover 

phenomenon. Spillover occurs when a transition metal dissociates hydrogen molecules 

into their respective atoms which are then either absorbed onto the surface or the pores of 

the material [15]. The transition metal must be deposited onto the surface of the polymer 

without decreasing the surface area and blocking pores for hydrogen adsorption. This 

phenomenon will be further discussed in the proceeding chapters. 

1.5. Thesis Outline 

Chapter 2 of this thesis will be an overview of the experimental procedures 

performed in synthesizing the investigated materials. The equipment required for 

Material BET Surface Area (m
2
/g) Hyd. Storage (wt.%)

poly(styrene-co-divinylbenzene) 1060 0.80

hypercrosslinked polystyrene 840 1.3

amine-polystyrene 600 1.1

hypercrosslinked plyaniline 426 0.77
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experimental synthesis and characterization will also be presented. Every characterization 

technique, including background and principles behind characterization, will also be 

discussed in detail. Material investigation is divided into three categories:  

1) Graphene and graphene oxide cross-linking 

2) Graphene and graphene oxide metal doping 

3) Polyaniline – graphene/graphene oxide composites  

These three directions will be characterized and tested for various relevant hydrogen 

sorption properties. Chapter 3 will discuss the concepts of cross-linking of graphene and 

graphene oxide dispersions. Chapter 4 will be a detailed explanation of the concept of 

metal decorating and results from various metals doped on the surfaces of graphene and 

graphene oxide complexes. Chapter 5 will discourse the synthesis of Polyaniline – 

graphene and Polyaniline – graphene oxide complexes and exploring different properties 

that arise from these complexes. Chapter 6 is an overview and discussion of the results 

with suggestions of future work.  
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Chapter 2. Experimental and Characterization Equipment 

This chapter introduces all of the instruments and equipment used to synthesize 

and characterize the investigated materials of this thesis. Detailed synthesis procedures 

will be discussed for the respective material in their corresponding chapter, only a brief 

overview will be said here. Background theory and equations are discussed when 

introducing characterization equipment that is directly related to critical hydrogen storage 

properties of the materials.  

2.1. Synthesis Materials and Equipment 

This section will include the purity and company of the critical starting materials 

used in this thesis. It will also include a brief overview of the instruments utilized to 

synthesize the various materials and composites. 

2.1.1. Materials 

Most materials were developed and synthesized in the lab in order to control 

purity and composition of the material. Basic organic solvents and acids were purchased 

from either Sigma Aldrich or Thermal Fisher Scientific. Chemicals that are not specified 

were purchased from Sigma Aldrich and will be specified in the procedures of that 

synthesis in the respective chapter of the material being synthesized. Table 2.1 shows 
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materials that were especially critical in the synthesis of the various complexes and 

composites that encompass this thesis.  

Table 2.1 Selected Materials and Chemical Information 

 

The materials listed in Table 2.1 were vital starting materials to synthesize the 

frameworks of high surface area and the polymer composites that will be discussed in 

detail in Chapters 3 – 5.  

2.1.2. Centrifuge 

A compact rotor centrifuge was used during my separation steps of the materials 

synthesized in this thesis. The centrifuge was from Labnet and the Hermle Z200A model. 

This model has a maximum speed of 6,000 rotations per minute. A centrifuge separates 

different components of a solution that have a distinct density difference. The heavier 

particles are pushed to the sides and bottom of the test tubes by the centripetal 

acceleration of the rotor. The lighter component, usually the liquid, rises to the top and 

can then be decanted in order to separate the majority of the phases. Vacuum filtration is 

usually followed in order to completely remove the liquid from the solid particles. 

Centrifugation is also used when one wants to confirm a dispersion has been synthesized. 

If a solid is completely dispersed in a solvent, then centrifugation should not be able to 

Material Purchased From Purity/Concentration

Graphene Platelets (15 m
2
/g) Angstrom Materials 0.9900

Graphene Platelets (400-800 m
2
/g) Angstrom Materials 0.9900

Graphene Oxide Dispersion in Water Angstrom Materials 0.5 weight %

Single Layer GO sheets in Ethanol ACS Materials 0.9900
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separate the phases, readily. The following figure shows the centrifuge used for the 

materials in this research.  

 

Figure 2.1 Labnet Rotary Centrifuge [18] 

2.1.3. Nitrogen Atmosphere Glove Box 

Various materials and synthesis steps were required to be performed in an oxygen 

depleted environment. The glove box used was an Innovative Technology System One 

glove box. The purification was less than 1 parts per million (ppm) of oxygen and water 

vapor in the glove box’s atmosphere. Samples that oxidized easily or hygroscopic were 

handled in the glove box in order to avoid contamination. Figure 2.1 shows an identical 

glove box to the one used for this thesis.  
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Figure 2.2 Innovative Technology System One Glove Box [19] 

2.1.4. Bath Sonicator 

An ultrasonic bath cleaner from MTI Corporation was required to bath sonicate 

samples. It is a 40 kilohertz frequency bath sonicator with a 120 voltage power input. The 

ultrasonic power is 180 Watts. The primary use of this equipment was to disperse 

graphene and graphene oxide in aqueous and organic solvents in preparation for a 

reaction. The sonicator uses sound waves to vibrate and evenly mix liquid mixtures. 

Sonication is the key synthesis step to change graphite into its respective graphene form. 

This will be elaborated in Chapter 3. Figure 2.2 shows an identical ultrasonic bath 

sonicator that was used for this thesis.  
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Figure 2.3 MTI Ultrasonic Bath Sonicator of 40 KHz [20] 

2.1.5. Ultrasonic Liquid Processor 

Ultra-sonication with the use of a micro-tip probe was required for samples that 

were more difficult to disperse within the solvent of choice. The ultra-sonicator was 

purchased from QSonica and is the Sonicator Q500 model. This sonicator is a 500 Watt 

ultrasonic power with a 20 kilohertz of output frequency. A micro-tip probe was used of 

0.8 mm in diameter. Figure 2.3 displays an identical model of the ultra-sonicator used for 

this thesis [21].  

 

Figure 2.4 QSonica Sonicator Q500 [21] 
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2.1.6. Solvothermal Synthesis Autoclave 

A manufactured autoclave was assembled by Dervis Demirocak at the University 

of South Florida machine shop. It has an air-tight gasket in order to ensure a pressure 

build-up is accomplished. The autoclave is made from a grade 316 stainless steel that can 

withstand high temperatures and pressures. It has the volumetric capacity of 55 mL. The 

autoclave was used for solvothermal synthesis, which is the placement of a dispersion in 

an autoclave that is stored in an oven for a long duration of time. The heat and the 

pressure build-up drive the reaction to occur and prevent evaporation of the solvent from 

occurring. The following figure is a picture of the autoclave used for these synthesis 

reactions. 

 

Figure 2.5 Stainless Steel Autocalve Used for Solvothermal Synthesis 

2.1.7. Mechanical Ball Milling 

Ball milling is used to ensure a powder mixture is homogenous and uniform in 

nature. The ball mill used was a Fritsch Pulverisette P5 planetary ball mill. The mill 

contains stainless steel balls that are placed with the powder. The mill rotates in a 

clockwise fashion while the stainless steel balls collide with the sample due to the 
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centripetal force. Physical modifications on the sample include reduced grain size, particle 

size reduction, and increased surface area. Ball milling was used to decrease the particle 

size of the materials while ensuring a homogenous and well-mixed powder solution was 

synthesized. The speed of the ball mill was commonly ran at 300 rotations per minute 

[22]. The following figure shows the ball mill used in this research.  

 

Figure 2.6 Fritsch Pulverisette P5 Planetary Ball Mill [22] 

2.2. Structural Characterization Instruments 

The following instruments were utilized in the structural characterization of the 

materials developed in this research project. This includes determining the various phases 

and compounds present in a specific material. Brief background and theory will be 

discussed with an emphasis on the instruments that are more critical in determining the 

hydrogen sorption properties of the material.  
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2.2.1. Fourier Transform – Infrared Spectroscopy (FT-IR) 

Fourier Transform – Infrared Spectroscopy is an important and facile instrument 

used to detect certain organic functionality groups detectable in most materials. The 

theory behind the instrument is that an infrared beam passes through the material and 

interference is measured by an interferometer. The pattern received by the interferometer 

is then translated back to a spectrum by a Fourier transform. This spectrum shows 

specific peaks at wavelengths of infrared light. The measured property is percent 

transmittance of light through the material. When the percent transmittance is affected at 

specific wavelengths (a.k.a. wavenumbers), a peak is shown on the spectrum. This peak 

can be correlated to a specific bind of the molecule [23]. Each type of bond, for example 

a carbon-oxygen or a carbon-nitrogen, yields a signal at a distinct wavenumber. FT-IR 

can prove whether a specific compound is found in a material by either the presence or 

absence of said compound’s characteristic peaks on the spectrum [23]. FT-IR will be 

utilized to confirm polymerization of aniline, cross-linking of graphene oxide, and extent 

of metal decorating on graphene and graphene oxide. A Perkin Elmer Spectrum One was 

the spectrometer used for all FT-IR tests in this thesis. The following figure shows this 

model of FT-IR used.  
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Figure 2.7 Spectrum One FT-IR Spectrometer [23] 

2.2.2. X-Ray Diffraction 

X-Ray Diffraction (XRD) is a method of characterization that aims to determine 

the crystal structure of the material. XRD is a critical method of investigation of a 

product that can determine if the correct phases are present in the sample. It is usually 

only used for crystalline compounds; however, it can shed some light on the structure of 

an amorphous compound. XRD was used, in some occasions, to compare samples of 

Polyaniline with Graphene and Graphene oxide complexes. A Philips X'Pert X-Ray 

diffractometer was used for all powder XRD analysis. Figure 2.8 shows the XRD 

instrument used in this research. It is implied from this point on in the thesis that XRD 

refers to powder X-ray Diffraction. Sample preparation is performed by pelletizing the 

powder sample and using double-sided tape to mount the pellet on an inert Silicon disc 

that is then placed in the wall mount of the XRD instrument.  
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Figure 2.8 Philips X’Pert X-Ray Diffractometer [24] 

 XRD has the potential to determine the chemical composition and physical 

characteristics of the sample. Examples of physical characteristics include grain/particle 

size and lattice formation [25]. The principle behind the XRD instrument is based on the 

idea that X-rays have constructive, or diffracted, interference when directed at the atoms 

of a sample. This diffraction of X-rays can be modeled by Bragg’s law, which is the 

following equation [25]:  

           2.1 

Where n is the order of the X-rays, λ is the corresponding wavelength of the X-ray, d is 

the interlayer spacing between the planes of the atomic crystal, and θ is the angle of 

incident of the X-ray [25]. By utilizing Equation 2.1, one can determine the interlayer 

spacing and crystal structure of a given sample. The XRD instrument operates by a beam 

rotating around the sample at various 2θ angles with a receiver rotating to capture the 

diffracted beams. When the directed beam heats an atom in the crystal lattice, it causes a 

diffraction that follows Bragg’s law. The diffracted beams cause a spike in the signal of 
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the plot that correlates to a specific crystal phase. Interpreting these peaks can help 

identify the phases present and the composition of the sample. Figure 2.9 shows an X-ray 

beam diffracted by atoms in the crystal lattice of the sample.  

 

Figure 2.9 X-ray Diffraction Causing a Signal Peak [25] 

The Scherrer equation can also be applied to an XRD plot in order to determine 

particle size (grains size) and number of layers in a sample. The Scherrer equation is: 

   
  

     
 2.2 

Where τ is the mean size of the particle, β is the line broadening at half the intensity, λ is 

the wavelength of the X-ray, and θ is the Bragg angle from equation 2.1 [25]. The 

Scherrer equation is only valid for nano-scale particles and its accuracy depends on the 

broadness of the signal from the XRD plot; error increases as the peaks become broader 

[25]. It is important to note that this equation yields a lower bound on the particle size 

due to various factors that contribute to the broadening of a peak. The Scherrer equation 

was used to determine the number of graphene layers present and the size of metal 

particles deposited on polymer and graphene complexes. 
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2.2.3. Scanning Electron Microscopy (SEM) 

Scanning Electron Microscopy can play a vital role in the structural 

characterization of a material. It is useful in determining the surface morphology, or 

physical structure and texture, of a material. Surface morphology affects the material in a 

variety of ways. SEM works by directing a beam of electrons directly at the surface of a 

material to bombard the electrons off the superficial layer electrons [26]. Electrons called 

secondary electrons are ejected from the k-orbitals due to inelastic scattering of the 

material and captured by an electron detector [26]. This electron detector transmits an 

output of a two-dimensional display. Limitations of SEM occur because one can only 

view the top layer of the material. Surface properties such as grain size, particle 

distribution, particle size, crystal defects, and crystal formation can be viewed by an 

SEM. It was mostly used to determine the particle distribution of the metal doped 

complexes along with the size of the metal particles on the surface [26]. A Hitachi S800 

Scanning Electron Microscope was used for the analysis of all samples in this thesis. The 

figure below shows the SEM instrument used in this research. 

 

Figure 2.10 Hitachi S800 SEM Used for Surface Analysis [24] 
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2.2.4. Specific Surface Area Tests 

Determining the specific surface area is the most important factor in evaluating 

the hydrogen storage potential of a physisorption material. In 1938, Stephen Brunauer, 

Paul Hugh Emmett, and Edward Teller published a theory about physical adsorption of 

surfaces. It was coined the term “BET” theory derived from the first initial of their last 

names. BET theory extended from the Langmuir surface area theory which only 

explained monolayer adsorption of a material. Langmuir equation relates the surface 

coverage, or adsorption, of gas molecules to the relative pressure applied to the 

adsorptive. BET theory models monolayer and multilayer adsorption of a material. They 

basically assumed there was no interaction between the layers of the material, in which 

they could apply the Langmuir method to each layer of an infinite amount of layers in a 

material [16].  

BET and Langmuir utilize the adsorption isotherm of a material and applies a 

specific equation to determine the specific surface area (SSA). The isotherm is a measure 

of the volume of gas adsorbed at constant temperature as a function of the gas pressure. 

Adsorption is performed with nitrogen as the adsorptive which results in adsorption at the 

liquid nitrogen temperature of 77 K. At this low temperature, molecular interactions are 

minimized and the nitrogen is able to absorb and desorb into the pores of a material with 

ease. The modeling of this remains simple because of the lack of interactions occurring at 

this low temperature [16]. Adsorption isotherms can be analyzed and the sample can be 

categorized into three different classes of porosity [27]: 

http://en.wikipedia.org/w/index.php?title=Stephen_Brunauer&action=edit&redlink=1
http://en.wikipedia.org/wiki/Paul_H._Emmett
http://en.wikipedia.org/wiki/Edward_Teller
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1) Microporous (< 2 nm) 

2) Mesoporous (2 – 50 nm) 

3) Macroporous (> 50 nm) 

The figure below shows the various types of adsorption isotherms that characterize 

materials of the three porosities. 

 

Figure 2.11 Adsorption Isotherms of Types I – V; Reprinted (adapted) with permission 

from Introduction to Colloid and Surface Chemistry. Copyright 2012 American Chemical 

Society [27] 

The Vads is the volume of gas adsorbed into the material and ρ and ρ0 are the 

pressure and saturation pressure, respectively. Type I curves are classified as a Langmuir 

adsorption and is characteristic of microporous materials with only monolayer adsorption 

occurring. Type II adsorption is characteristic of nonporous or macroporous materials 

that adsorb monolayer and multilayer coverage. Point “B” on this curve indicates the 

point of monolayer saturation. Adsorption after this point is within the material’s 

multilayers. This isotherm exhibits reversibility of adsorption and desorption. Type IV 
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adsorption corresponds to mesoporous materials with multilayer adsorption. These are 

the primary adsorption curves that appear for the materials in this thesis. Hysteresis 

occurs when the desorption curve does not follow the same path as the adsorption curve. 

This occurs when mesopores are present in the material. Hysteresis also yields 

information about the specific pore shape of the material. The figure below shows an 

example of hysteresis in a Type IV adsorption isotherm [27]. 

 

Figure 2.12 Hysteresis Shown in a Type IV Adsorption Isotherm [27] 

BET theory uses the below equations to relate the adsorption isotherm of a 

material with the surface area [9]. 

   
2.3 

Where c is a constant equal to [9]:  

 
2.4 

Where P is the equilibrium pressure, P0 is the saturation pressure, υ is the volume of 

adsorbed gas, υm is the volume of adsorbed gas in the monolayer of the surface, E1 is the 

adsorption enthalpy of the first layer of coverage, EL is the adsorption of liquefaction of 

the material, R is the gas constant, and T is the temperature of adsorption [9]. The BET 
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equation is only applied in the relative pressure range of 0.05 < P/P0 <0.35 [9]. The 

specific surface area can then be calculated by the equation below [9].  

     
   

   
 2.5 

In equation 2.5, the N is Avogadro’s number, V is the molar volume of the adsorbate gas, 

and   is the mass of adsorbent. The method of experimentation is using a setup illustrated 

in the below figure.  

 

Figure 2.13 Volumetric Apparatus for Gas Adsorption; Reprinted (adapted) with 

permission from Introduction to Colloid and Surface Chemistry. Copyright 2012 

American Chemical Society [27] 

Specified volume reservoirs are used to record the drop in pressure between the 

sample and the system in order to extrapolate the volume of gas adsorbed [27]. Equations 

of states can be used to relate the pressure change to the volume of gas adsorbed. The 

instrument used for this analysis is the Autosorb1 (AS1) developed by Quantachrome. It 

also has two outgassing stations with jacketed heaters in order to evaporate all impurities 

from a sample before it is analyzed. The figure below is an identical model of the 
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Autosorb 1 used for all BET and gas adsorption experiments at cryogenic temperatures 

for this research. 

 

Figure 2.14 Autosorb1 BET/Gas Adsorption Instrument [28] 

AS1 is also capable of performing hydrogen storage tests at liquid nitrogen levels 

by using hydrogen as an adsorbate instead of nitrogen. One can also determine adsorption 

enthalpies of a material by running gas adsorption at liquid nitrogen (77 K) and liquid 

argon (87 K). Manipulation of equations such as the Clausius – Clapeyron equation can 

be implemented to find the heats of adsorption (a.k.a. adsorption enthalpy) of a given 

material [6].  Detailed methods of calculation will be presented in Chapter 3. Micropore 

analysis and Thermal Programmed Desorption (TPD) are also capabilities of 

Quantachrome’s AS1. 

Calibration of Autosorb1 is critical due to the high sensitivity and inherent errors 

of measuring gas adsorption. Possible sources of error are leaks, pressure sensors, volume 

errors, and pseudo-adsorption from within the instrument. The instrument was measured 
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to ensure correct nitrogen and hydrogen adsorption for surface area and hydrogen storage 

measurements. The material that was used for the calibration test was activated carbon G-

60 bought from Norit, which has an established and well-reported surface area of 850 

m
2
/g [29]. Autosorb1 reported a surface area of 836 m

2
/g, which is precise when taking 

into account the accuracy of the instrument. The hydrogen storage capacity of Norit G-60 

activated carbon at 77 K is shown in figure 2.15. The saturation capacity of activated 

carbon was found to be at about 1.4 weight %, which correlates with literature values for 

the same material [9].  

 

Figure 2.15 H2 Storage of AC at 77 K 

2.2.5. Hydrogen Sorption Test 

Hydrogen sorption capacities were tested on the polymer and graphene based 

samples using the HyEnergy PCT Pro 2000. Gas adsorption is typically measured by 

either a gravimetric system or a volumetric system. The gravimetric system utilizes 



www.manaraa.com

36 

extremely sensitive mass balances in order to determine the increase or decrease in 

weight of the sample. The PCT Pro 2000 utilizes the volumetric method to measure gas 

adsorption. This method capitalizes on an accurate volume measurement of reservoirs 

that are in equilibrium with the sample holder. When the sample absorbs or desorbs 

hydrogen, the pressure will decrease or increase, respectively. This pressure change can 

be correlated through the Van der Waal’s equation of state to determine the amount of 

gas stored or released. The Van der Waal’s equation is as follows [8]: 

(  
   

  
) (    )      2.6 

In the above equation, p is the pressure, V is the volume of the container holding the 

sample, R is the gas constant 8.314 J/mol*K), T is the temperature of the sample in 

Kelvin, n is the number of moles of gas adsorbed or released, a is the repulsion force 

between two molecules (0.02476 m
6
Pa/mol

2
), and b is the volume occupied by a mole of 

hydrogen molecules (2.661 * 10
5
 m

3
) [8]. This equation is a modified form of the ideal 

gas law in order to support the non-ideal conditions of hydrogen storage at high pressures 

of 80 bar. PCT Pro 2000 directly measures the temperature (T) and pressure (p) of a 

sample, while a, b, and R are constants throughout the duration of the experiment. 

Therefore, the number of moles of hydrogen absorbed, n, can be determined. By 

multiplying the number of moles of hydrogen by its molecular weight of 1.0079 g/mol, 

the mass of hydrogen stored can be found, labeled as mhydrogen. The weight percentage of 

hydrogen is found by the following equation: 
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      2.7 

In literature, there has been some confusion with the definition of hydrogen weight 

percentage stored. For the remained of this thesis, equation 2.7 is the concrete definition 

of hydrogen stored in a material. All values will be reported in this form.  

The Pressure-Composition Test (PCT) is capable of being run at 500 °C via a 

heater jacket on the outside of the sample holder. The PCT was operated up to a 

maximum pressure of 100 bar, due to cylinder restrictions and safety precautions. 

Purging of the system and sample holder was done with helium before every experiment. 

Hydrogen leak tests were also performed in order to ensure only a negligible amount of 

hydrogen was leaking from the holder and system. The figure below is the instrument 

used for this research [24].  

 

Figure 2.16 HyEnergy PCT Pro 2000 Gas Sorption Instrument  [24] 

The PCT instrument is capable of two distinct hydrogen sorption tests. The first 

test is called a kinetics test. This test is fairly simple in it exposes the sample holder 

containing the material to a specified pressure of hydrogen gas for an extended amount of 
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time. This test is usually run to determine the time for a sample to become saturated with 

hydrogen and this is considered the equilibrium time. For physisorption materials, this 

saturation time should be fairly quick, on the magnitude of minutes. The figure below is 

an example of a kinetics run on a Polyaniline (Pani) – Graphene oxide (GO) complex at 

70 bar of hydrogen pressure. Weight percentage of hydrogen stored is measured as a 

function of time. Cycles may also be run to determine the reversibility of the given 

material. 

 

Figure 2.17 Kinetics Plot of Pani-GO at 70 Bar 

The second test is a true pressure-composition test (PCT). This test involves 

exposing the sample to amounts of hydrogen at time intervals of increasing pressure. The 

time interval is set to reach equilibrium before the next pressure step is exposed to the 

sample. This time interval can be determined by running the kinetics test. Weight 

percentage of hydrogen is measured as a function of the applied pressure of hydrogen. 

Hydrogen uptake and release can be measured by PCT and analysis can be performed in 

order to determine if complete desorption of the sample occurred and at what pressure is 
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the sample reached its saturation for hydrogen uptake. Cycles can also be run to 

determine reversibility of hydrogen uptake and release of the sample. The figure below is 

an example of a PCT plot of Graphene oxide doped with Calcium. 

 

Figure 2.18 PCT Plot of GO Doped with Calcium 

2.3. Thermal Characterization 

Thermal characterization deals with a materials behavior when exposed to various 

levels of heat. The only method of thermal characterization used in this research was 

Thermal Gravimetric Analysis. 

2.3.1. Thermal Gravimetric Analysis (TGA) 

TGA is an instrument primarily used to measure the thermal stability of various 

materials up to temperatures around 1000 °C. The TGA instrument used was a Thermal 

Analysis SDT (Simultaneous DSC and TGA) Q600 shown in the figure below. 
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Figure 2.19 Thermal Analysis SDT Q600 Instrument [4] 

Thermal stability of all materials was measured before synthesis reactions were 

performed in order to determine the material’s stability throughout the reaction. TGA has 

an extremely sensitive weight balance to measure changes in mass as a function of 

increasing temperature. The sensitivity of the instrument is ± 0.1 μg with a temperature 

limit of 1500 °C [4]. A heating rate of 1 °C/min was employed in order to ensure thermal 

equilibrium was reached within the sample. The TGA is placed inside of an inert nitrogen 

glove box to ensure minimal impurities affect the sample. In this thesis, TGA was used to 

verify thermal stability and to investigate at what temperatures caused a release of 

hydrogen from the material.  
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Chapter 3. Graphene – Based Complexes for Hydrogen Storage 

3.1. Introduction 

This chapter will discuss the hydrogen storage properties of graphene and 

graphene-based complexes. The primary substrate of these complexes is graphene and 

graphene oxide. Modification of graphene (G) and graphene oxide (GO) will be 

performed to optimize the hydrogen storage properties. Methods of modification include 

cross-linking of the material and metal doping using earth metals and transition metals. 

Graphene has become increasingly popular since the first isolation by a physicist 

at the University of Manchester, Andre Geim, via micromechanical cleavage. Graphene 

can be simplified to a single layer or isolated atomic layer of the more common carbon 

allotrope graphite. Andre Geim would end up winning the Nobel Prize in Physics in 2010 

for his synthesis and characterization of the novel compound that would boom an 

explosion of research on graphene and its applications [30]. 

Graphene is known as the thinnest material in the world with being one atom 

thick. It consists of two-dimensional (2D) monolayers of sp
2
 hybridized carbon in a 

hexagonal lattice. The six-membered lattice resembles a “honeycomb” that can best be 

described as “atomic-scale chicken wire. [31]” Figure 3.1 shows the hexagonal crystal 

lattice that a layer of graphene takes shape.  
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Figure 3.1 Hexagonal Crystal Lattice of a Single Layer of Graphene [31] 

Graphite takes form due to layers of graphene stacked around each other in a 

three-dimensional (3D) framework. When this framework is separated into a flat 2D 

network of layers, then graphene is developed. Graphene is the only 2D framework 

composed of only carbon. Graphene is considered to be an allotrope, which is a 

compound of the same elemental identity but with a different structural framework. 

Allotropes of graphene consist of diamond (3D tetrahedral lattice formation), graphite, 

(3D hexagonal lattice), nanotubes (1D formation), and fullerenes (zero-dimensional 

network) [30]. Graphene has been the allotrope that has attracted the most research and 

attention from scientists in the past decade [31]. 

Graphene has attracted most of its attention due to its unique electrical 

conductivity and optical properties. Its applications include supercapacitors, batteries, 

nanocomposites, and sensors [30]. The unique electronic properties of graphene derive 
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from its electrons “obeying linear dispersion relation, yet behave like massless relativistic 

particles. [32]” This rare occurrence of electronic properties behaves like a hybrid of 

dense matter and quantum electrodynamics [31]. Some of the rare electronic properties 

displayed by graphene are the absence of localization and the anomalous quantum Hall 

effect [32]. Graphene sheets are the building blocks for many compounds including 

charcoal and graphite. The interlayer spacing between each graphene sheet in graphite is 

0.335 nanometers [8]. Graphene has the potential to be a high surface area material due to 

its inherit spacing between each layer [32].  

Hydrogen storage occurs in graphene through physical adsorption, or 

physisorption. Physisorption is the adsorption of a gas molecule to the surface and within 

the pores of the complex. Forces involved with physisorption are primarily weak Van der 

Waals forces that attract and repel the gas adsorbate. These weak forces allow for fast 

loading and unloading of hydrogen in the material. However, only a small amount of 

hydrogen is stored at room temperature due to the weak adsorption enthalpies of the 

material and the hydrogen molecules. Because of this, the parameters that dominate 

hydrogen sorption are high surface area and optimal pore size distribution [33]. Carbon 

materials that include carbon nanotubes (CNTs) and metal organic frameworks (MOFs) 

have also been of extensive interest for hydrogen storage. However, these materials still 

fall short of the DOE targets for hydrogen storage due to factors of pore size and 

adsorption enthalpy at room temperature [33]. Graphene can be applied to hydrogen 

storage by modification of the framework and optimizing the pore size distribution of the 

complex. Modification techniques such as cross-linking and doping of the structure with 

metals can optimize adsorption enthalpies, pore size, and surface area of the complex. 
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Graphene oxide is also of some importance due to its influential oxygen 

functionalities that may play an important role in hydrogen sorption. The oxygen 

functionalities also allow this form of graphene to be dispersed in various solvents that 

may be immiscible for graphene. Graphene  and graphene oxide are considered to be 

zero-gap semiconductors with fast electron mobility compared to its allotropes [32]. 

Graphene oxide is also utilized as a synthesis route for a feasible method to synthesize 

graphene. Both G and GO will be investigated for their hydrogen sorption properties. 

3.2. Graphene Oxide Production 

Graphene oxide is a critical material in this research due to is incorporation in 

almost every material synthesis. Graphene oxide will be the starting material for the 

synthesis of graphene and any other derivative of graphene. It has been decided that the 

synthesis route to form graphene will be to first synthesis graphene oxide then perform a 

reduction yielding a reduced form of graphene oxide, or simply graphene. Graphene 

oxide has also been investigated for gas adsorption in the past decade. It has potential to 

store gas if the surface area can be increased within the structure. The oxygen 

functionalities on the structure also allow graphene oxide to be easily dispersed in 

aqueous and organic solvents. This is important in synthesis in order for the graphene 

oxide to fully take part in the reaction it needs to be fully dispersed throughout the 

solvent. Figure 3.2 shows the proposed structure of graphene oxide. One can see the 

carbonyl (C=O), hydroxyl (-OH), ether (R-C-R), epoxy (C-O-C), and carboxyl (R-

COOH) groups present throughout the structure. Graphene oxide and graphene will be 
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compared to each other for their surface area and storage capabilities after various 

modification techniques will be experimented on the materials. 

 

Figure 3.2 Graphene Oxide Structure 

3.2.1. Synthesis of Graphene Oxide 

Graphene oxide will be synthesized using a well-documented modified Hummer’s 

method. The Hummer’s method is simply a synthesis route for complete oxidation of a 

material. The oxidizing agents used can vary from one research group to another. The 

oxidizing agents used in the modified Hummer’s method are potassium permanganate 

and hydrogen peroxide [34]. All synthesis materials were purchased from Sigma Aldrich, 

unless specified otherwise. Synthesis starting materials are graphite powder (<45 μm), 

potassium permanganate (KMnO4), 30% hydrogen peroxide (H2O2), and concentrated 

sulfuric acid (H2SO4). 10 grams of graphite is stirred in 230 mL of sulfuric acid while this 

flask is kept in an ice bath to remain temperature of reaction around 0 °C. Then 30 grams 

of potassium permanganate is slowly and carefully added to the mixture while the 

temperature is kept below 20 °C. This solution is then stirred and once returned to 0 °C, 
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the ice bath is then removed from the reaction flask. The flask is allowed to cool to room 

temperature and stirred for 15 minutes. 250 mL of deionized water (DI) is slowly and 

carefully added to cool the reaction below 98 °C. The reaction is then left to stir for 

another 15 minutes before being diluting even more by roughly 1 Liter of DI water. Then 

100 mL of hydrogen peroxide are added to the solution and then left to stir for 24 hours. 

The solution is separated by centrifugation at 5000 rotations per minute (rpm) for 30 

minutes using a Labnet rotary centrifuge. Vacuum filtration was then used along with 

excessive rinsing of the filtered product with water to remove unreacted graphite. The 

filter used is a Whatman qualitative grade 2 (8 μm) filter paper. Outgassing in an oil bath 

at 80 °C for 24 hours was implemented to yield a finished product of graphene oxide 

[34]. This is the entire process of the modified Hummer’s method to yield graphene 

oxide. This process was sometimes down-scaled and the correct molar ratios of graphite, 

potassium permanganate, and hydrogen peroxide were kept constant.  

3.2.2. FT-IR Characterization of Graphene Oxide 

Fourier Transform Infrared spectroscopy (FT-IR) was utilized to ensure complete 

oxidation of the graphene was successfully performed. Specific functionalities of 

carbonyl and hydroxyl groups should be present in the product. Figure 3.3 shows the FT-

IR spectrum of the graphene oxide product. 
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Figure 3.3 FT-IR of Graphene Oxide via Hummer’s Method 

The peaks at 1624 cm
-1

 and 3400 cm
-1

 are signals showing the stretching and 

bending of the prevalent O – H (hydroxyl) groups in the product. The signal band at 1725 

cm
-1

 is characteristic of the carbonyl groups (C=O) found in the carboxylic groups of 

graphene oxide. The bands at 1220 cm
-1

 and 1400 cm
-1

 correspond to the hydroxyl and 

epoxy groups, respectively. This spectrum confirms successful oxidation of graphite to 

graphene oxide according to the presence of specific signals and its similarity to literature 

results.  

3.2.3. X-Ray Diffraction Characterization  

X-ray diffraction (XRD) was utilized to confirm the results of FT-IR in order to 

ensure graphene oxide was synthesized and no impurity phases are present in the 

compound. The most prevalent phase will be a graphitic phases that is still present within 
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the graphene oxide compound. XRD will be able to express the degree of this impurity 

graphitic phase in the synthesized product. Figure 3.4 shows the XRD pattern of 

graphene oxide. 

 

Figure 3.4 XRD of Graphene Oxide 

The peaks present are found at about 11 2θ° and 27 2θ°. The peak at 11 2θ° is the 

dominant peak and corresponds to the (001) lattice point of the graphene oxide phase. 

This peak shows lattice spacing of about 8.4 Å. This should be the only phase present. 

The peak at 27 2θ° is characteristic of the graphitic phase of graphite oxide. The intensity 

of this peak is 1/3 in intensity as the graphene oxide peak. This shows promise of a 

majority phase of graphene oxide in the product from the modified Hummer’s method. 
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3.2.4. Thermal Gravimetric Analysis 

Thermal stability of graphene oxide was measured by Thermal Analysis SDT 

Q600 in an inert nitrogen environment. The purpose of this measurement is to determine 

at what temperatures it is safe to handle graphene oxide without undesired reactions 

occurring in the structure. Figure 3.5 shows the TGA plot of graphene oxide up to the 

temperature of 500 °C. 

 

Figure 3.5 TGA Plot of Graphene Oxide 

Figure 3.5 proves that graphene oxide is stable up until the temperature of 175 °C. 

It is not until then that the complex begins to experience weight loss due to undesired 

reactions within the sample. This temperature will be recorded and it will be noted that 

reaction and outgassing temperatures should not exceed 150 °C, just to be sure the 
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integrity of our sample is not compromised. This constraint will also apply for graphene 

as reported in literature [35].  

3.2.5. Surface Area and H2
 
Sorption Characterization  

Surface area and hydrogen storage measurements were run in order to obtain 

control results to compare with results after modification of graphene oxide. Surface area 

was calculated through Autosorb1 instrument and incorporation of BET theory. The 

surface area was determined to be 18.8 m
2
/g. Hydrogen sorption measurements were 

tested at liquid nitrogen temperature (77 K) and ambient pressure conditions. Figure 3.6 

shows the hydrogen capacity of graphene oxide to be at a saturation of 0.18 weight %.  

 

Figure 3.6 H2 Storage of Graphene Oxide at 77 K 
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3.2.6. Summary of Graphene Oxide 

Graphene oxide was synthesized using a modified Hummer’s method in order to 

completely oxidize graphite and form a product that can be dispersed into various 

solvents. The dispersion will be beneficial because the graphene oxide will maintain its 

interlayer spacing between the sheets, which defines graphene oxide different than 

graphite oxide. FT-IR results shows the according oxygen groups present in the product. 

XRD also shows a majority phase of graphene oxide over the graphitic phase. Hydrogen 

storage at 77 K is 0.18 weight %, which translates to a negligible amount of storage at 

room temperature. This storage capacity will be increased by various methods of 

modification in this thesis.  

3.3. Reduced Graphene Oxide 

Many methods of synthesizing graphene have been developed and optimizing 

since the discovery of graphene. The mechanical cleavage process that was first used to 

discover graphene is a process that only yields an extremely small amount of graphene 

per synthesis process and is considered impractical [31]. Graphene sheets were also 

discovered to be developed via single-crystal silicon carbide via vacuum graphitization. 

This process had the advantage of being able to directly fabricate the pattern of graphene 

sheets that was desired for the application. This was a practical approach for electronic 

applications but tedious for applications that require bulk production at a low cost [10]. 

Chemical vapor deposition has also been a proven method to synthesis graphene, yet due 

to equipment cost and product yield, this is an unreasonable route for graphene 

production. A “wet” chemistry route was desired to synthesize graphene with minimal 
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defects and aggregation of sheets. A critical problem occurs when graphene sheets are 

separated from the respective dispersion solvent that is holding it; the sheets immediately 

stack upon each other and severely decrease the surface area of the complex. Methods to 

prevent this consist of ultrasonication, cross-linking spacers, and thermal exfoliation 

treatment [31].  

A “wet” chemistry route to reduce graphene oxide into graphene sheets with 

minimal defects has been developed with variations by different research groups [36],  

[37]. These variations usually occur with the choice of the reducing agent. A vital 

requirement of the process is to form reduced GO (rGO) that is dispersible in a variety of 

solvents. This is important in the doping or cross-linking process where the graphene 

must dissolve in the solvent in order to take part in the reaction. It is usually 

recommended that synthesized graphene is dispersible in water and common organic 

solvents such as ethanol and methanol. Long-term stability in the solvents is usually 

investigated to determine if the graphene remains a homogenous solution in the solvent 

or if the particles collect at the bottom proving a colloidal suspension was made, not a 

dispersion solution. Ultrasonication and bath sonication are both utilized to disperse the 

graphene oxide and graphene throughout the synthesis process. Synthesis routes were 

first developed using strong reducing agents like hydrazine, but have since been 

improved to avoid such toxic and explosive chemicals. Two methods of reduction was 

investigated and compared in this research; reduction via L-Ascorbic acid and reduction 

via N,N-dimethylhydrazine.  
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3.3.1. Synthesis Route via L-Ascorbic Acid  

Solution-based chemical routes for the reduction of graphene oxide are the most 

cost effective and feasible processes to perform for mass production of graphene. Using a 

mild reducing agent, like L-Ascorbic acid (LAA), prevents harsh reaction conditions and 

minimizes chemical damage to the complex. LAA is nontoxic and most commonly used 

for the reduction of living systems that require sensitive treatment. This synthesis route 

also prevents the irreversible aggregation of the graphene sheets that are undesirable. In 

this process, the oxidized product of LAA also acts as a capping agent to stabilize the 

reduced graphene oxide (rGO) product, which also eliminates the need for a capping 

agent or surfactant [37].  

Reduction of the graphene oxide only required a one step, one pot chemical 

synthesis. L-Ascorbic acid was the only chemical required. The synthesis begins with 

dispersing the graphene oxide, synthesized by the modified Hummer’s method as stated 

in section 3.2, into DI water. The concentration of the aqueous GO dispersion is 1 

mg/mL. The aqueous dispersion of GO is performed by ultrasonicating 1 mg of GO 

powder in 100 mL of DI water for 30 minutes. Ultrasonication was performed by a 

QSonica Sonicator Q500. The dispersion was then centrifuged to remove excess GO 

particles that were not dispersed in the DI water. The dispersion was then left over night 

to ensure the GO particles were sufficiently dispersed in the DI water. 

The reduction procedure was to place 1.00 g of L-Ascorbic acid in 100 mL of 

aqueous GO dispersion (1 mg/mL). This mixture is vigorously stirred for 48 hours before 

complete reduction is performed. Separation is performed by vacuum filtration then the 
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sample is outgassed in an oil bath at 80 °C for 24 hours [37]. The filter used is a 

Whatman qualitative grade 2 (8 μm) filter paper. 

3.3.2. FT-IR Characterization of LAA Reduction 

Fourier Transform Infrared Spectroscopy was performed on the sample in order to 

verify the reduction was successfully performed on graphene oxide. FT-IR was 

performed measuring the % transmittance of the sample. Sample was prepared by mixing 

in potassium bromide powder and then pelletizing. Figure 3.7 shows the FT-IR spectrum 

of the reduced GO product from the reduction process via L-Ascorbic acid. 

 

Figure 3.7 FT-IR Spectrum of rGO via L-Ascorbic Acid 

The oxygen – containing functionalities that characterize graphene oxide are 

shown in Table 3.1 with their respective signal wavelength. One expects to see most of 

these signals reduced or disappear after the chemical reduction process.  
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Table 3.1 FT-IR Chart of Oxygen Functionalities of rGO via LAA 

Oxygen Functionality Wavenumber (cm
-1

) Analysis 

C = O  1726 cm
-1

 Slightly weakened 

O – H 3395 cm
-1

 Still Present 

O – H 1410 cm
-1

 Slightly weakened 

C – O (epoxy) 1226 cm
-1

 Disappeared 

C – O (alkoxy) 1052 cm
-1

 Disappeared 

  

By examining the FT-IR spectrum, it appears that 4 out of 5 of the oxygen-

containing signals either weakened or completely disappeared after the reduction using 

L-Ascorbic acid.  

3.3.3 Synthesis Route via N,N-Dimethylhydrazine  

Reduction of graphene oxide was also attempted using N,N-dimethylhydrazine 

(DMH) as the reducing agent. The graphene oxide was dispersed in N,N-

dimethylformamide (DMF) because literature reports that this solvent is optimal for the 

graphene oxide to be sufficiently reduced [28]. The theory behind this synthesis is the 

fact that graphite can easily be oxidized to graphite oxide which can then be dispersed 

and exfoliated in a solvent. Once the dispersion has been considered to be long-term 

stable in the solvent, it can then be reduced, or deoxygenated, to form electrically 

conductive graphene [28]. This is the facile synthesis route for the reduction of graphene 

oxide in any dispersion using an ultrasonicator and modified Hummer’s method. 
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The synthesis starting materials are graphite (<45 μm), N,N-dimethylformamide 

(DMF), and N,N-dimethylhydrazine (DMH). The graphene oxide dispersion in DMF is 

prepared first and tested for long-term stability. Graphene oxide is prepared via the 

modified Hummer’s method as stated in section 3.2.1. A solution of 0.5 mg/mL of 

concentration is prepared of GO in DMF. In this instance, 200 mL of the GO dispersion 

was prepared, which amounts to 100 mg of GO dispersed in the solution. This solution 

was dispersed via ultrasonication using the QSonica Sonicator Q500 for 30 minutes. The 

solution is then vigorously stirred and placed in a water bath at 95 °C. Then 130 mg of 

DMH (1.3 mg per 1 mg of GO) is slowly added to the solution and stirred for 1 hour. One 

should notice the color of the solution turn from a dark grey to a rich black color. 

Separation was performed by vacuum filtration and outgassed in an oil bath at 80 °C for 

24 hours before any testing was performed on the sample. The filter used is a Whatman 

qualitative grade 2 (8 μm) filter paper. 

3.3.4. FT-IR Characterization of DMH Reduction 

Fourier Transform Infrared Spectroscopy was performed on the sample to 

measure the % transmittance of the pelletized powder sample of reduced graphene oxide 

via DMH. The oxygen-containing functionalities are being investigated to consider if 

complete reduction was performed on the graphene oxide sample. Figure 3.8 shows the 

corresponding spectrum for the reduced graphene oxide sample via DMH in the solvent 

DMF. 
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Figure 3.8 FT-IR Spectrum of rGO via DMH 

The analysis of the oxygen-containing functionalities is shown in the table below. 

One would expect for the majority of the oxygen signals to either weaken or disappear 

completely.  

Table 3.2 FT-IR Chart of Oxygen Functionalities of rGO via DMH 

Oxygen Functionality Wavenumber (cm
-1

) Analysis 

C = O  1726 cm
-1

 Disappeared 

O – H 3395 cm
-1

 Still Present 

O – H 1410 cm
-1

 Slightly weakened 

C – O (epoxy) 1226 cm
-1

 Disappeared 

C – O (alkoxy) 1052 cm
-1

 Disappeared 
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3.3.5. Summary of Results 

The products of both reduction processes were compared to each other to 

determine which process successfully reduced graphene oxide to graphene. The 

following figure compares the FT-IR spectrum of graphene oxide before reduction and 

both products of each reduction synthesis.  

 

Figure 3.9 FT-IR Comparison of GO, rGO via LAA, and rGO via DMH 

The only difference between the reduced graphene oxide products is the absence 

of the signal at 1726 cm
-1

 for rGO via DMH. Figure 3.9 shows a circle around the peak 

that rGO via LAA contains that shows it wasn’t completely reduced. This signal 

corresponds to the carbonyl (C=O) group of the graphene oxide structure. In conclusion, 

the reduction using N,N-dimethylhydrazine (DMH) of graphene oxide to graphene is the 
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preferred synthesis and will be utilized in other parts of this research when graphene is 

required as the starting material.  

3.4. Calcium Doping of Graphene and Graphene Oxide 

Metal doping of graphene and graphene oxide aims to optimize the adsorption 

enthalpy of the hydrogen molecules with the storage material. Adsorption enthalpy 

measures the attraction of hydrogen molecules to the surface of the adsorbent. It is the 

single most important property to characterize the surface chemistry of physisorption 

materials. Adsorption enthalpy in the range of 1 – 10 kJ/mol of H2 is ideal for storage at 

liquid nitrogen (77 K) temperature. It is desired to increase the enthalpy to the range of 

15 – 20 kJ/mol of H2 to increase the storage of hydrogen at room temperature [38]. One 

way to achieve this increase in enthalpy is to dope the surface with a transition metal such 

as titanium or platinum. The transition metal binds with hydrogen molecules through 

hybridization of the hydrogen molecule and the anti-boding orbital with the d-orbital of 

the transition metal; this phenomenon is called Kubas interactions [38]. The difficulty in 

his process is the tendency of transition metals to cluster on the surface of nanomaterials 

instead of being evenly dispersed. This occurs due to the high cohesive energy (4 eV) of 

transition metals [38].  

The other alternative to optimize the adsorption enthalpy is the doping of carbon 

structures with alkali and alkali earth metals, for example lithium, potassium and sodium. 

The most promising of these metals is considered to be calcium (Ca). Calcium has a 

much lower cohesive energy of only 1.8 eV, which minimizes clustering on the surface of 

the nanomaterial [38]. Dr. Stephen G. Louie and his research group at University of 
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California – Berkley have determined, through various theoretical Monte Carlo 

simulations based on density functional theory, that calcium has the potential to store 8 or 

9 weight % of hydrogen at room temperature [38]. This group simulates that each 

calcium atom can bind up to six hydrogen molecules with an ideal binding energy of 15 

kJ/mol [38]. This holds much promise if a synthesis route can be developed to 

sufficiently dope carbon nanomaterials.  

3.4.1. Synthesis of Calcium Doped Graphene and Graphene Oxide 

Problems arise in determining a chemical synthesis route to sufficiently dope the 

surface of graphene and graphene oxide with calcium atoms of minimal clustering. A 

synthesis route was developed and modeled after a chemical reduction process using 

metal precursors added to a G or GO dispersion. More specifically, this process was 

modeled after a process to dope carbon materials with transition metals using metallic 

acids as precursors. Starting materials required are calcium chloride hexahydrate, 3-(N,N-

dimethyldodecylammonio) propanesulfonate (SB12), sodium carbonate, dilute (1 M) 

sulfuric acid, and aqueous dispersions of graphene and graphene oxide. The ratio of 

calcium to carbon atoms for both G and GO synthesis was determined to be 4:14 by Dr. 

Louie’s research group [38]. This ratio was utilized to determine correct mass ratios for 

all chemicals. First, 101.30 mg of calcium chloride hexahydrate is dissolved into 10 mL 

of DI water. This solution is neutralized to a pH of 7 via sodium carbonate. Then the 

calcium solution is added into an aqueous dispersion of graphene or graphene oxide. For 

graphene, 20 mg of graphene is ultrasonicated for 30 minutes in 40 mL of DI water. For 

graphene oxide, 17.54 mg of graphene oxide is ultrasonicated for 30 minutes in 40 mL of 
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DI water. Then the calcium – graphene/graphene oxide solution is neutralized to a pH of 

7 via sodium carbonate. 39 mg of the surfactant, SB12, in 12.5 g of methanol is then 

added to the solution and the solution is vigorously stirred and kept at 80 °C for 90 

minutes. A few drops of dilute (1 M) sulfuric acid are then dropped into the solution in 

order to precipitate the Ca – graphene or Ca – graphene oxide compound. Vacuum 

filtration with rinsing by methanol and DI water is repeatedly done to remove unreacted 

particles from the product. The filter used is a Whatman qualitative grade 2 (8 μm) filter 

paper. Outgassing at 80 °C for 25 hours is performed in an oil bath before 

characterization is performed.  

3.4.2. FT-IR Characterization of G – Ca and GO – Ca 

Characterization is performed by Fourier Transform Infrared spectroscopy in 

order to analyze the compounds before and after doping with calcium. The calcium doped 

products should not show any newly formed bonds on the infrared spectrum since Ca 

bonds do not produce a signal. If new bonds are formed, then an impurity phase has been 

produced by the calcium doping. Figure 3.10 compares the spectrum of graphene from 

Angstrom Materials and the graphene doped with calcium.  
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Figure 3.10 FT-IR Spectra of Graphene  and G – Ca Doped 

Peaks at 1650 cm
-1

 and 1120 cm
-1

 appear to weaken and sharpen, respectively, in 

the graphene doped with calcium product. This may be due to calcium clustering over 

certain areas of graphene’s carbon bonds that cause this difference in peak intensity.  
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Figure 3.11 FT-IR Spectra of GO and GO – Ca  

Figure 3.11 compares the spectra of graphene oxide, synthesized via Hummer’s 

method, and graphene oxide doped with calcium. There is a strong weakening of the 

signal at 1710 cm
-1

 which corresponds to the carbonyl group of graphene oxide. This 

weakening may be due to calcium clustering around localized areas of the graphene oxide 

surface that inhibit detection by the infrared spectroscopy. It appears that both calcium 

doped forms of graphene and graphene oxide are synthesized with minimal impurity 

phases present in the lattice.  

3.4.3. Surface Area Characterization 

Surface area tests were performed on both doped samples of G and GO using the 

Autosorb1 instrument. Mass samples in the range of 100 – 200 mg were loaded into the 
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instrument for testing. The nitrogen adsorption plots for graphene – calcium and 

graphene oxide – calcium are shown below in Figure 3.12.  

 

Figure 3.12 BET N2 Adsorption Plot of G – Ca and GO – Ca 

Both 11 point N2 adsorption plots are inserted into Equation 2.3, the BET 

equation, in order to evaluate the specific surface area of each material. The calculated 

specific surface area was determined to be 8.41 m
2
/g and 8.15 m

2
/g for G – Ca and GO – 

Ca, respectively.  These values correlate with a degree of clustering of calcium atoms that 

either fill surface pores or aggregate on the surface of the material. Table 3.3 shows a 

comparison between untreated and doped complexes of graphene and graphene oxide.  
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Table 3.3 BET of Untreated and Doped G and GO 

Sample Name BET SSA (m
2
/g) 

Graphene Oxide 18.8 

Graphene 11.3 

GO – Ca 8.2 

G – Ca 8.4 

 

3.4.4. H2 Sorption Measurements at 77 K 

Hydrogen sorption tests were run for both calcium doped samples using 

Autosorb1 at 77 K. This test will show a direct relationship of surface area to storage 

capacity of hydrogen. This relationship is only proportional when testing at the liquid 

nitrogen temperature. The storage at 77 K gives one an idea of what room temperature 

storage capacity should be. This can only be estimated when dealing with physisorption 

materials. It is estimated that every 1000 m
2
/g of surface area adsorbs 1 weight % of 

hydrogen at 77 K [16]. Figure 3.13 shows the hydrogen adsorption of calcium doped 

graphene and graphene oxide at 77 K. The maximum storage of G – Ca and GO – Ca 

doped is 0.01 wt. %, and 0.0045 wt. %, respectively. It appears that graphene is a more 

suitable complex to store hydrogen when doped with calcium. This may be due to 

graphene’s lack of oxygen functionalities that impede or reject the adsorption of 

hydrogen molecules on the surface of the carbon sheets.   
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Figure 3.13 H2 Storage at 77 K of G – Ca and GO – Ca 

3.4.5. Heat of Adsorption Measurement 

The isoteric heat of adsorption is a measure of the attraction of hydrogen to the 

surface and pores of the adsorbent. It is calculated using the Van’t Hoff equation and 

utilizing adsorption isotherms at 77 and 87 K. When the heat of adsorption is in the range 

of 0 – 10 kJ/mol, hydrogen adsorption at liquid nitrogen temperature is favorable. Once 

the adsorption enthalpy approaches the range of 15 – 20 kJ/mol, room temperature (298 

K) hydrogen adsorption is most favorable. Even though the calcium doped samples 

adsorbed a very small amount of hydrogen at 77 K, it may be due to their increased 

adsorption enthalpy which would result in a much higher storage at room temperature. 

Figure 3.14 shows the isoteric heats of adsorption of calcium doped grapheme at various 
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points of adsorption. The maximum adsorption enthalpy for this sample is about 0.62 

kJ/mol.  

 

Figure 3.14 Heats of Adsorption for Calcium Doped Graphene 

The range of adsorption enthalpies goes into the negative realm because the 

hydrogen storage of the material is extremely low which results in inconsistent results. 

The negative values show a repulsion of the hydrogen molecules with the surface of 

graphene. Figure 3.15 shows the heats of adsorption for calcium doped grapheme oxide. 

These results are much more consistent with literature due to its higher storage capacity 

at 77 and 87 K. The range of adsorption enthalpies are from 6 – 1 kJ/mol. This is better 

than the calcium doped graphene complex, yet still far away from the 15 – 20 kJ/mol 

range for hydrogen storage at room temperature.  
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Figure 3.15 Heats of Adsorption for Calcium Doped Graphene Oxide 

3.4.5. Calcium Doping of G and GO Summary 

FT-IR results show a successful doping of calcium on the graphene and graphene 

oxide layers. The calcium atoms were proven to cluster and cause a decrease in surface 

area that resulted in a surface area that is highly unsuitable for hydrogen storage. The 

hydrogen storage measurement at 77 K demonstrated graphene’s superiority over 

graphene oxide for hydrogen storage. The calcium doped graphene complex proved to 

have a hydrogen storage capacity of over 120% greater than its graphene oxide 

counterpart. However, the storage capacity of 0.01 weight % at 77 K is a relatively low 

storage capacity and, due to low adsorption enthalpies in the range of 1 – 6 kJ/mol, 

results in a negligible capacity at room temperature.  
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3.5. Exfoliation of Graphene and Graphene Oxide via Platinum 

Exfoliation is the process of spacing graphene or GO sheets between other sheets 

while preventing face-to-face aggregation of the carbon sheets. This is vital in attaining 

and maintaining a high surface area material. Aggregation always occurs when removing 

G or GO from its dispersion and drying it. The theoretical surface area of graphene is 

calculated to be 2600 m
2
/g. Any decrease in this area can be attributed to aggregation of 

the carbon sheets. It is estimated that around 60 graphene sheets agglomerate on top of 

each other into graphite-like bundles. Dried graphene shows a surface area of around 20 

m
2
/g, which is significantly less than 2600 m

2
/g. Graphite stacks of carbon sheets are 

commonly defined as more than 10 sheets of carbon aggregated on top of each other. 

Aggregation lowers surface area and decreases accessible pores for gas adsorption [39].  

Aggregation may be inhibited by impregnating the graphene sheets with spacers 

of either organic or metallic identity. Nanoparticles can be deposited on the graphene 

sheets when the graphene is in its dispersion form. These nanoparticles will act as 

structural supports for when the graphene is removed from the dispersion. Platinum (Pt) 

nanoparticles have been commonly used due to their size and reactivity with hydrogen. A 

chemical synthesis route of reduction of a metallic acid in the presence of a surfactant can 

deposit the metal nanoparticles on the carbon sheets [39]. Figure 3.16 shows the process 

of exfoliation using the platinum particles as spacers to prevent aggregation.  
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Figure 3.16 Exfoliation of Graphene Using Platinum Particles [39] 

Platinum particles create spacing of a few nanometers between each carbon sheet, 

exposing more of the carbon sheets for gas adsorption. Both graphene and graphene 

oxide will be investigated to determine if platinum nanoparticles can increase the surface 

area by preventing agglomeration of carbon sheets.  

3.5.1. Synthesis of G and GO Exfoliation via Pt Particles  

All starting materials are purchased from Sigma Aldrich unless specified 

differently. The graphene used is reduced graphene oxide (rGO) made from the reducing 

agent DMH as reported in section 3.2.3. The synthesis is identical for graphene and 

graphene oxide, besides when taking into account weight ratios of Pt to G or GO. The 

chemical reduction of Chloroplatinic acid in the presence of the surfactant 3-(N,N-

dimethyldodecylammonio) propanesulfonate (SB12). First, water soluble graphene or 

graphene oxide is developed in order to ensure G or GO is dispersed in DI water. 
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Graphene was synthesized using the route for reduction found in 3.3.3 Synthesis Route 

via N,N-Dimethylhydrazine. GO was synthesized using the modified Hummer’s method 

also discussed in the same section. 20 mg of G/GO is dispersed in 50 mL of DI water and 

then ultrasonicated for 30 minutes. Aqueous solutions were left overnight to ensure 

dispersions were sufficiently synthesized. Then 60 mg of Chloroplatinic acid hexahydrate 

is dissolved in 10 mL of DI water. This solution is adjusted to a pH of about 7 with the 

use of sodium carbonate. This solution is then added to the G/GO aqueous solution.  39 

mg of the surfactant 3-(N,N-dimethyldodecylammonio) propanesulfonate (SB12) is 

added into 15 mL of methanol and then added into the G/GO solution. This solution is 

then adjusted to a pH of 7 via sodium carbonate. This reaction solution is then kept at 80 

°C for 90 minutes. After the time has passed, about 10 mL of 1M Hydrochloric acid is 

added into the solution in order to precipitate the Pt-G/GO solid from the solution [39]. 

The product is removed via vacuum filtration with rinsing of methanol and DI water to 

remove unreacted particles. The filter used is a Whatman qualitative grade 2 (8 μm) filter 

paper. The filtrate should be clear to indicate complete reduction occurred. This synthesis 

is 50 weight % of platinum to carbon ratio. Ratios of 1, 10, and 50 weight % of platinum 

to carbon atoms were synthesized for GO exfoliation in order to determine the optimum 

ratio. 

3.5.2. FT-IR Characterization of Pt-Graphene/Graphene Oxide 

Fourier Transform Infrared spectroscopy is used to confirm no side reactions 

occurred during the reaction. The platinum particles are being deposited on the surface of 

the carbon sheets, yet there are no chemical reactions occurring during process. It should 



www.manaraa.com

72 

also be noted that FT-IR shows organic bonds and platinum particles will not show up in 

the spectrum. The FT-IR spectrum should confirm that no new functional groups are 

present in both of the compounds. Figure 3.17 compares the FT-IR of rGO and rGO – Pt 

exfoliated.  

 

Figure 3.17 FT-IR of rGO (untreated) and rGO-Pt Exfoliated 

As you can see in Figure 3.17, the spectrum of rGO (untreated) and rGO – Pt 

exfoliated are nearly identical, which confirms no undesired side reactions or impurities 

entered the reaction during the exfoliation process. Figure 3.18 compares graphene oxide 

(untreated) to GO – Pt exfoliated. It appears most of the peaks are identical. However, a 

conjugated peak at 2850 cm
-1

 and 2910 cm
-1

 appears in the GO – Pt product. These peaks 

can be attributed to the C-H and C-CH3
 
bonds that are present in both compounds, yet 

appear more distinct in the exfoliated product.  
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Figure 3.18 FT-IR of GO (untreated) and GO – Pt Exfoliated 

3.5.3. X-Ray Diffraction Characterization 

X-ray diffraction (XRD) was performed on a sample of graphene oxide – 

platinum. The main purposes of XRD of this sample were to confirm the complete 

reduction of the Chloroplatinic acid and to calculate the crystallite size of the platinum 

particles. Figure 3.19 shows the XRD pattern of GO-Pt (1 wt. %) and GO control 

(untreated) sample.  
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Figure 3.19 XRD Pattern of GO and GO-Pt (1 wt.%) 

The figure above shows a legend that tells one which peaks are attributed to 

carbon and platinum appearing in the crystal lattice. It is very clear that the platinum did 

deposit into the sheets of graphene oxide. The platinum peaks are the common face-

centered cubic lattice (fcc) crystal lattice formation that usually characterizes platinum 

particles. The peaks for Pt are: 40°, 46°, 67°, and 83°. The decrease in intensity of the 

carbon peak at 26° is indicative of reduced aggregation. This peak arises in graphite 

because of the aggregation of carbon sheets. This peak disappears for the platinum 

exfoliated graphene oxide which proves an increase in surface area should be expected.  

It is necessary to also calculate the particle size of the platinum nanoparticles on 

the carbon sheets. The crystallite size was determined using the Scherrer formula, 

equation 2.2, which has been re-stated below. By analyzing the Pt peak at 40°, the 

crystallite size of the tetrahedral-shaped Pt particles was determined to be in the range of 

Pt peaks C peaks 
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6.9-9.7 nanometers. It has been determined that an ideal size of 1-3 nanometers is 

optimum for maximum exfoliation of the carbon sheets [39]. 

   
  

     
 3.1 

3.5.4. Surface Area Characterization 

Surface area tests were performed on all samples because this is the attribute that 

is being optimized with platinum exfoliation. Nitrogen adsorption of every sample from 

the relative pressure range of 0.05 to 0.3 was used with equation 2.3, in order to 

determine the BET specific surface area of each sample. Mass ratios of 1, 10, and 50 

weight % of platinum to carbon ratios were synthesized and test. Figure 3.20 shows the 

nitrogen adsorption plots of 1, 10, and 50 weight % of platinum to carbon of graphene 

oxide – platinum and reduced graphene oxide – platinum samples.  
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Figure 3.20 BET N2 Adsorption Plot of GO-Pt and rGO-Pt Samples 

The surface area of the samples and the graphene oxide control, or untreated, 

sample are shown in Table 3.4. Table 3.5 compares the reduced graphene oxide – 

platinum sample with the control reduced graphene oxide and untreated graphene that 

was purchased from Angstrom Materials. This reduced graphene oxide was synthesized 

by using L-ascorbic acid as the reducing agent.  
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Table 3.4 BET SSA of GO-Pt Samples 

Sample Name BET SSA (m
2
/g) 

50 Weight % 1.7 

10 Weight % 50.1 

1 Weight % 65.2 

GO Control 18.8 

 

Table 3.5 BET SSA of rGO-Pt and Control Samples 

Sample Name BET SSA (m
2
/g) 

rGO – Pt 11.4 

rGO Control 2.6 

Graphene (untreated) 11.3 

 

By analyzing Table 3.4, it appears that the optimum surface area is around the 1 

weight % ratio of platinum to carbon atoms. At higher ratios of 10 or 50 weight %, the 

platinum particles seem to actually cause a lowering of surface area probably due to their 

clustering on the surface of the substrate. It is a challenge to evenly disperse the platinum 

particles across the carbon sheets to minimize clustering and a decrease in surface area. 

Table 3.5 shows the unaltered change that the platinum particles had on the reduced 

graphene oxide complex. It appears that either clustering of the platinum particles or 

misplacement of the particles led to a low surface area material of only 11 m
2
/g.  
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3.5.5. Hydrogen Sorption Measurements at 77 K  

Hydrogen adsorption was measured for both rGO – Pt exfoliated and GO – Pt 

exfoliated and compared to each other and their respective untreated form. The storage 

capacity at 77 K should increase since platinum is increasing the surface area of the 

material. Platinum is also causing a spillover effect to occur by disassociating the 

hydrogen molecules into atoms that are more susceptible to adsorb onto the surface and 

in the pores of the material. Figure 3.21 shows the adsorption of hydrogen of the 

exfoliated samples in comparison with untreated graphene oxide.  

 

Figure 3.21 H2
 
Storage at 77 K of GO-Pt, rGO-Pt, and GO 

It appears that the maximum storage at 77 K and up to 1 atmosphere of pressure is 

0.045 weight % and 0.025 weight % for GO – Pt (1 wt. %) and rGO – Pt, respectively. 

Graphene oxide and exfoliated graphene oxide appear to have nearly identical saturation 
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levels of hydrogen adsorption. The storage capacity of GO – Pt is higher than rGO – Pt 

because of the diminished surface area of the rGO – Pt sample. However, the storage 

capacity of graphene oxide (untreated) still remains higher than both platinum exfoliated 

complexes.  

3.5.6. Platinum Exfoliation Summary 

Exfoliation via platinum particles has the sole purpose of reducing aggregation of 

the carbon sheets and maintaining a high surface area material suitable for hydrogen 

storage. FT-IR characterization proved that no unwanted reactions occurred during the 

synthesis. XRD also proved that the platinum was succesfully reduced into the carbon 

material. The particle size of platinum was calculated to be in the range of 7 – 10 

nanometers, which is much larger than the desired 1 – 3 nanometer range. This problem 

causes a decrease in surface area and exposure sites for adsorption of hydrogen. BET 

surface area results show that the 1 weight % of platinum to carbon ratio is ideal for the 

most optimum surface area. Hydrogen storage is optimum for this ratio with the GO – Pt 

sample in which the sample stores up to 0.045 weight %. However, this storage capacity 

is lower than untreated graphene oxide, which means there is no measurable change in 

exfoliating the GO or rGO samples with platinum particles.  

3.6 Cross-Linking of GO via Organic Spacers 

Not only can cross-linking (CL) be performed by metallic particles; organic 

spacers may also be used. The ideal situation is to decrease aggregation of the carbon 

sheets with taking up as minimal space as possible between the sheets. Graphene oxide 
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has an inherit spacing of 0.7 nanometers. The majority of this space is filled by hydroxyl 

and carboxyl groups, which also inhibit hydrogen adsorption. Utilization of the oxygen 

functional groups to increase the interlayer spacing, without filling the space between the 

sheets, is the target of this modification technique.  

The reactivity of oxygen can be taken advantage of here to connect the carbon 

sheets with an organic spacer. The well-established reactivity of oxygen and Boronic acid 

is utilized here to cross-link the graphene oxide sheets to form a graphene oxide 

framework (GOF) [34]. The linker selected controls the pore shape and volume of the 

graphene oxide framework. Boronic acid has been shown to optimize the surface area and 

is of a relatively small molecular size since boron has an atomic number of 3 in the 

periodic table [34]. Grand Monte Carlo simulations (GMCs) demonstrate the potential of 

a graphene oxide framework adsorbing up to 10 weight % of hydrogen [34]. Figure 3.22 

shows the GMCs of various GOFs of different linker per carbon ratios at 77 K. For 

instance, GOF-32 refers to a graphene oxide framework synthesized with 1 Boronic acid 

linker per carbon atom.  
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Figure 3.22 Grand Monte Carlo Simulation of Various GOFs [34] 

As Figure 3.22 shows, GOFs at higher linker to carbon ratios are more optimized 

for hydrogen adsorption due to the maximum unoccuppied space in the framework since 

very few linkers are present. This does lead to higher pore volume and gas adsorption; 

however, the instability of the framework is at risk and more linkers need to be added for 

structural support. An optimization was calculated to determine that 1 linker per 32 

carbon atoms upholds structural stability and still has accesible pores for gas adsorption 

[34]. Density functional theory lattice dynamics calculations prove structural stability and 

GMCs show hydrogen storage of about 6 weight % at 77 K and 1 bar.  The cross-linker 

being used is 1,4-benzene diboronic acid (B14DBA), which has a special affinity for the 

hydroxyl groups on the graphene oxide surface. Figure 3.23 shows the strcutural 

configuration of B14DBA. Note the functional groups of the phenyl ring and boron ester 

groups.  
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Figure 3.23 Chemical Structure Diagram of B14DBA 

Figure 3.24 shows the reaction occurring with B14DBA and the –OH groups of 

the graphene oxide sheets.  

 

Figure 3.24 (a) Boronic Ester Formation (b) GOF Formation with B14DBA [34] 

The framework is complete when the ester connects on both sides to the carbon 

sheets as seen at the end of part (b) of Figure 3.24. The reaction process used is a 

solvothermal synthesis. This synthesis consists of placing a precursor solution in an 

autoclave (high-pressurized container) for an extended amount of time at a specific 

temperature. The particle size and distribution can be controlled by the solvent and 
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reaction temperature. Various solvents will be investigated for their cross-linking 

capabilities and surface area effect on the product.  

3.6.1. Solvothermal Synthesis Route for GOFs 

All starting materials were purchased from Sigma Aldrich unless otherwise 

specified. Dispersions of graphene oxide in various solvents need to be synthesized 

before the reaction can begin. Every dispersion was ultrasonicated using the QSonica 

Q500 for 30 minutes and left overnight to ensure a dispersion was synthesized. The most 

promising weight ratio was a 1:1 of GO to B14DBA; therefore, 1 gram of 1,4-benzene 

Diboronic acid is added for every 1 gram of GO used in the dispersion. For a typical 

synthesis, 200 mg of graphene oxide (synthesized via modified Hummer’s method) is 

dissolved in 20 mL of the given solvent, which consist of Ethanol, Methanol, 

Tetrahydrofuran (THF), and N-Methyl-2-pyrrolidone (NMP). The dispersion was then 

ultrasonicated for 30 minutes and then 200 mg of 1,4-benzene Diboronic acid (B14DBA) 

is stirred into the mixture. The mixture was vigorously stirred until all of the B14DBA 

was dissolved. At times, bath sonication using the MTI Sonicator was required to assist 

stirring. The solution was then placed in the 55 mL stainless steel autoclave developed by 

Emre Demirocak. The autoclave was sealed air-tight and placed in a dry oven at 80 °C 

for 72 hours. The autoclave was shaken every 5 or so hours to keep the settling GO in the 

dispersion. The autoclave is then removed from the oven and left to cool to room 

temperature. The solution is then centrifuged at 5000 rpm for 30 minutes. The solution is 

decanted and then further filtrated through vacuum filtration. The filter used is a 

Whatman qualitative grade 2 (8 μm) filter paper. The product is then repeatedly washed 
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with the corresponding solvent used in the synthesis to remove unreacted GO particles. 

The solution is then washed with water and outgassed in an oil bath at 80 °C for 24 hours.  

3.6.2. FT-IR Characterization of GO Cross-Linked Samples 

FT-IR was an important characterization technique for the cross-linking synthesis 

because it proved whether the Boronic acid spacers correctly reacted within the carbon 

sheets to form the GOF. FT-IR can directly tell one if the correct bonds were formed and 

to what extent cross-linking is present throughout the graphene oxide framework. The 

primary bond is the B-O bond that attaches with the hydroxyl groups of the carbon 

sheets. FT-IR can also distinguish whether an impurity phase is present or not in the 

product due to the cross-linker reacting with other groups on the carbon sheets. Figure 

3.25 shows the FT-IR of GO cross-linked in various solvents, GO control sample, and 

1,4-benzene Diboronic acid (B14DBA).  
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Figure 3.25 FT-IR Plot of GO Cross-linked in Various Solvents 

Figure 3.25 shows the spectrum of graphene oxide after being cross-linked in the 

solvents of methanol, ethanol, THF, and NMP. The spectrum of the cross-linker 

B14DBA and a control sample of graphene oxide are also shown for comparison. 

Important signals of B14DBA are the B-O deformation peak at 675 cm
-1

 and the phenyl 

ring carbon double bond signal at 1522 cm
-1

. Both of these signals are circled on the 

B14DBA spectrum. The B-O peak is seen in the methanol, ethanol, and NMP products, 

in which shows the sharpest peak in the ethanol solvent. The carbon double bond phenyl 

peak is only very slightly present in the ethanol product. An absorbance band in between 

1250 cm
-1

 and 1400 cm
-1

 corresponds to the B-O groups connected with the various 

functional groups of the graphene oxide sheets. This absorbance band slightly appears in 

all of the samples, but most prominent in the NMP product. NMP and ethanol are the best 
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candidates for the cross-linking synthesis. However, NMP appears to have an impurity 

phase from the B14DBA at 1100 cm
-1

. With this being taken into account, ethanol 

appears to be the best solvent for the solvothermal synthesis to cross-link graphene oxide.  

3.6.3. Surface Area Characterization of Cross-Linked Samples 

Surface area is the primary motivation for this modification technique of graphene 

oxide. Surface area measurements were performed using BET theory nitrogen adsorption 

isotherms at 77 K. 11 point BET theory utilizes the nitrogen adsorption curves from the 

relative pressure range of 0.05 to 0.3, while taking 11 data points within said pressure 

range. Figure 3.26 shows the adsorption isotherms for the various GOFs in their solvents.  

 

Figure 3.26 N2 Adsorption Isotherms of Cross-Linked GO Samples at 77 K 

It appears from Figure 3.26 that the GO product from the ethanol solvothermal 

reaction has the highest adsorption of nitrogen at 77 K. The respective BET specific 

surface areas are shown in Table 3.6.  
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Table 3.6 BET SSA of GO CL in Various Solvents 

Sample Name BET SSA (m2/g) 

Ethanol 324.2 

Methanol 19.5 

NMP 8.1 

THF 15.2 

GO Control 18.8 

 

The highest surface area was the graphene oxide cross-linked in ethanol product, 

with a surface area of 324 m
2
/g. The other products only had surface areas in the vicinity 

of the graphene oxide control. It appears that the cross-linking reactions with the 

graphene oxide sheets only occurred in this product. Partial reactions occurred with low 

instability causing the carbon sheets to aggregate and decreasing the surface area.  

3.6.4. Hydrogen Sorption Measurements at 77 K 

The hydrogen capacity was measured on every cross-linked sample, even though 

it is unnecessary for the low surface area samples. This is because at 77 K, the only factor 

for hydrogen storage is surface area and any area below 100 m
2
/g is considered too small 

for sufficient gas adsorption. Figure 3.27 shows the hydrogen adsorption isotherm of 

graphene oxide with the various solvents along with the control sample of graphene 

oxide.  
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Figure 3.27 H2 Adsorption of Cross-Linked GO at 77 K 

The maximum hydrogen storage at 77 K was performed by the cross-linked 

sample in ethanol at a storage capacity of 0.33 weight %. GO cross-linked in THF had a 

close capacity of 0.26 weight %. Both of these capacities were increased from the 

untreated graphene oxide sample with a storage capacity of 0.18 weight %. The graphene 

oxide cross-linked in NMP product experienced a decrease in storage capacity due to its 

dramatic decrease in its surface area (8.1 m
2
/g). This same phenomenon occurred with 

the cross-linked sample in Methanol, storage capacity decreased from 0.18 m
2
/g to 0.12 

m
2
/g. The surface area of the Methanol cross-linked sample remained about constant with 

the control; therefore, it appears the organic spacers are impeding hydrogen access to the 

pores of graphene oxide.  
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3.6.5. Cross-Linking of Graphene Oxide Summary 

Cross-linking of graphene oxide had the sole purpose of increasing the interlayer 

spacing between the carbon sheets in hopes of increasing hydrogen adsorption. FT-IR 

shows that the cross-linker, 1,4-benzene Diboronic acid, was successfully incorporated 

into the graphene oxide network of the cross-linked GO in ethanol and NMP samples. 

BET surface area measurements showed that ethanol was the only solvent to dramatically 

increase the surface area of graphene oxide to 324 m
2
/g. Hydrogen adsorption 

measurements complemented the BET results showing the GO CL with ethanol had the 

highest hydrogen uptake of 0.33 weight %. This was a 70% increase from the untreated 

graphene oxide sample. GO CL in THF also showed a 45% increase from the untreated 

graphene oxide. These results show an improvement in the surface area and gas 

adsorption at 77 K through the cross-linking modification technique.  

3.7. Polyaniline-Based Composites 

Polyaniline (Pani) is one of the most researched polymers because of its 

conducting and electronic properties. It is considered to be a conducting polymer with a 

salt and base form of different properties. The synthesis of Pani is a facile route that also 

attracted researchers in the fields of energy storage, light-emitting diodes, sensors, 

catalysis, and capacitors [40]. The emeraldine base form of Pani will be investigated in 

this thesis to incorporate into a composite with graphene and graphene oxide. The 

emeraldine base form’s chemical structure is shown in Figure 3.28. The base form of 

Pani contains benzenoid and quinoid rings that give a unique functionality to the 

complex. Polyaniline utilizes its surface area in order to take part in physisorption of 
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hydrogen molecules. This aspect is the main concern of this part of the research. Pani and 

other polymers have been the focus of controversial publications in the past [41]. Many 

groups reported storage capacities of 6 – 8 weight % at room temperature, but were later 

refuted by other groups that could not reproduce their results [42]. Polyaniline will be 

utilized as a substrate for embedding graphene and graphene oxide sheets into the 

complex. Storage properties at room temperature and surface area will be investigated to 

determine an optimum complex with various forms of graphene and graphene oxide.  

 

Figure 3.28 Various Forms of Polyaniline [42] 

3.7.1. Synthesis of Bulk Polyaniline 

This is the synthesis route to develop the emeraldine base of Pani in its natural 

fiber form without any surface morphology modification. The route to synthesize Pani 

was an oxidative polymerization method of the “rapid mixing” technique. The oxidant of 

choice is ammonium persulfate (APS) and the doping acid used was hydrochloric acid. 

For a typical synthesis, 9.5 mL of aniline is stirred with 200 mL of 1M HCl in a flask. 

Another flask is prepared by mixing 2.28 grams of APS with 200 mL of HCl. Both 

solutions are stirred for 20 minutes to ensure complete mixing. The APS solution is then 
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rapidly poured into the aniline solution and left to stir for 24 hours at room temperature. 

Vacuum filtration was then performed using a 11 μm pore size filter. Solution was rinsed 

with 1M HCl to remove unreacted aniline. Product was then dried under vacuum in an oil 

bath at 80 °C for 24 hours.  

3.7.2. Synthesis of Pani-Graphene and Pani-Graphene Oxide 

The composites of Pani with graphene and graphene oxide were synthesized by an 

identical method from section 3.7.1. The graphene, graphene oxide, or any other 

modified G/GO complex was added to the 9.5 mL of aniline and 200 mL of HCl before 

the polymerization reaction began. The amount of graphene or graphene oxide varied 

from 1:0.05 to 1:0.1 molar ratio of moles of aniline to moles of graphene/graphene oxide. 

The entirety of the synthesis remains the same besides this addition step of the G/GO.  

3.7.3. FT-IR Characterization of Pani, Pani-G, and Pani-GO 

FT-IR spectroscopy was utilized to determine successful polymerization and 

formation of the polymer composite. It is important that no unexpected bonds are formed 

between Pani and graphene or graphene oxide. The composite is a physical composite, 

there are no chemical reactions occurring between Pani and the G/GO compound. Figure 

3.29 compares the spectra of graphene oxide, Pani, and Pani-graphene oxide to determine 

successful polymerization. The distinct peaks of Pani are the benzenoid and quinoid ring 

signals at 1450 and 1560 cm
-1

, respectively. Both of these peaks are prominent in the 

Pani-graphene oxide spectrum. The peak at 1300 cm
-1

 in the Pani and Pani-graphene 

oxide spectra represent the π-electron localization due to the protonation of Pani. There is 
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a very sharp peak at 1375 cm
-1

 that is due to the C-N bonds throughout the Pani complex. 

This peak is also found in the Pani-graphene oxide complex. The FT-IR shows successful 

polymerization of aniline and addition of graphene oxide to the Pani complex.  

 

 

Figure 3.29 FT-IR of Pani, Pani-Graphene Oxide, and Graphene Oxide 

 Figure 3.30 shows the FT-IR spectra of Pani, graphene, and Pani-graphene in 

order to compare and determine successful formation of the composite. The benzenoid 

and quinoid ring signals at 1450 and 1560 cm
-1

, respectively, are both found in the Pani-

graphene composite. The signal around 1300 cm
-1

 for the π-electron localization of Pani 

is also present in the Pani-graphene complex. The C-N peak at 1375 cm
-1

 is also found in 

the Pani-graphene spectrum as a very distinct peak. According to FT-IR, it appears that 

the aniline was successfully polymerized while the graphene was an additive in the 

complex to form the Pani-graphene composite.  
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Figure 3.30 FT-IR of Pani, Graphene, and Pani-Graphene 

3.7.4. Thermal Gravimetric Analysis of Pani-G and Pani-GO 

Thermal gravimetric analysis (TGA) was performed on the Polyaniline – 

graphene and Polyaniline – graphene oxide samples in order to determine the thermal 

stability of the compounds at elevated temperatures. This is critical when determining if 

synthesis and outgassing procedures will compromise the stability of the complex. Figure 

3.31 shows the thermal stability plot of both polymeric complexes. The first drop in 

weight loss should be noted as water vapor loss as the temperature approaches 100 °C. 

The stability of both compounds appears to be in the range of 110 °C – 175 °C.  
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Figure 3.31 TGA Plot of Pani-G and Pani-GO 

3.7.5. Surface Area Characterization of Pani-G and Pani-GO 

Surface area measurements were run for the various molar ratios of Pani-graphene 

in order to determine an optimum ratio of Pani to graphene.. The primary purpose of 

these test are to show if a critical reduction in surface area occurred when adding the 

graphene to the polymer matrix. Table 3.7 shows the surface areas of the various ratios of 

Pani-graphene products. The ratio refers to mols of aniline: mols of graphene in the 

composite. It appears that the ratio of 1:0.05 and 1:0.1 maintain a surface area around 35 

m
2
/g. With taking into the error of Autosorb1, the values of 35.9 and 36.6 m

2
/g are 

negligibly the same value. The molar ratio of 1:1 reduced the surface area of Pani from 

24 to 10.3 m
2
/g. Further measurements will be taken to determine which molar ratio of 

1:0.1 or 1:0.05 is more ideal for hydrogen physisorption.  
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Table 3.7 BET Surface Area of Pani-G at Various Ratios 

Sample Name BET SSA (m2/g) 

Polyaniline 24 [41] 

Graphene 2.6 

Pani-G (1:1) 10.3 

Pani-G (1:0.1) 35.9 

Pani-G (1:0.05) 36.6 

 

 Taking into effect the results from Table 3.7, the molar ratio of 1:0.05 of mols of 

aniline to mols of graphene will be considered the most optimum ratio. This ratio will be 

utilized in the polymeric complex with graphene oxide. The surface area was measured 

by BET theory to determine the degree of surface area loss from synthesis of the 

composite. Table 3.8 shows that the surface area increased to 31.1 m
2
/g in the Pani-GO 

composite.  

Table 3.8 BET Surface Area of Pani-GO and Controls 

Sample Name BET SSA (m2/g) 

Polyaniline 24 [41] 

Graphene Oxide 18.8 

Pani-GO (1:0.05) 31.1 

 



www.manaraa.com

96 

3.7.6. Hydrogen Sorption at 77 K of Pani-G and Pani-GO 

Hydrogen storage at liquid nitrogen (77 K) temperature was measured for the 

polymer composites using Autosorb 1 made by Quantachrome Instruments. This 

adsorption measurement is at a low pressure; pressure range for adsorption is from 0 to 1 

atm. Figure 3.32 shows the hydrogen storage of Pani-G and Pani-GO at 77 K. Both 

composites are synthesized using the 1:0.05 molar ratio of aniline to G/GO. The storage 

capacity was measured to be 0.019 wt. % and 0.016 wt. % for Pani-G and Pani-GO, 

respectively. The slight increase in hydrogen storage might be due to the Pani-G 

composite’s larger surface area of 36.6 m
2
/g compared to 31.1 m

2
/g for Pani-GO. 

 

Figure 3.32 H2 Sorption of Pani-G and Pani-GO at 77 K 
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3.7.6. Hydrogen Sorption at Room Temperature of Pani-Graphene 

 Hydrogen capacity was measured of the various ratios of Pani-graphene and also 

of Pani-GO complex in order to determine an optimum composite. Room temperature 

storage was of interest rather than liquid nitrogen temperature due to the low surface area 

of the Pani composites. Hydrogen storage was tested with PCT Pro 2000 with samples in 

the precision of 500 milligrams. Pressure-composition tests (PCT) showed which 

material has the greatest hydrogen storage capacity and at what pressure does it reach 

saturation. Figure 3.33 shows the PCT curves of Pani-graphene at the molar ratios of 1:1, 

1:0.1, and 1:0.05. The saturation pressure for the 1:0.05 molar ratio sample was at 85 bar, 

yet was at 105 bar for the other samples. Saturation occurs when the composite has no 

more surface area and pore volume to store hydrogen. The highest capacity sample was 

the 1:0.1 ratio which reached a hydrogen storage of 0.58 weight %. The 1:1 molar ratio 

sample reached a hydrogen storage of 0.51 weight %.  

 



www.manaraa.com

98 

 

Figure 3.33 PCT of Pani-Graphene at Various Molar Ratios 

3.7.7. Summary of Pani-G and Pani-GO Results 

Polyaniline is a novel material that has unique optical and electronic properties. 

The synthesis route for Pani is a facile and cost-effective one. The method of 

synthesizing Pani was dilute oxidative polymerization with rapid mixing. Graphene and 

graphene oxide were incorporated into the Pani matrix in order to increase the hydrogen 

storage of the composite. FT-IR characterization proved that G/GO was successfully 

embedded in the polymer matrix while aniline was still sufficiently polymerized by APS. 

Surface area measurements proved that graphene at low molar ratios (1:0.05) does not 

block any of the pores and inherit surface area of Pani. The ratio of 1:0.05 was used for 

both graphene and graphene oxide polymeric composites. Liquid nitrogen temperature 

hydrogen capacity was at 0.016 wt. % and 0.019 wt. % for Pani-GO and Pani-G, 
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respectively. Hydrogen storage at room temperature showed that the sample of Pani-

graphene with a 1:0.1 molar ratio stores the highest of hydrogen at 0.58 weight % at a 

pressure of 105 bars. This is still well short of the DOE targets for year 2015, yet it is an 

improvement from 0.1 weight %, which is the storage of Pani at room temperature.  

3.8. Pani-GO Cross-Linked Composite 

The highest surface area material of the cross-linked graphene oxide samples was 

the GO cross-linked with the solvent ethanol. The achieved surface area was 324 m
2
/g 

from the GO control of 18.8 m
2
/g. The storage capacity at 77 K was a relatively high 

value of 0.33 wt. %.  

3.8.1. Method of Synthesis of Pani-GO (C.L.) 

Two methods of synthesis were utilized and compared. The first being the GO is 

cross-linked using the solvothermal synthesis, with ethanol as the solvent, then 

incorporated into the Polyaniline substrate using the same method outlined in section 

3.7.1, which will be called the “post-synthesis.” The other method was to incorporate 

untreated GO into Pani using the synthesis in 3.7.1 then to cross-link the Pani-GO 

complex using the solvothermal process. This will be called the “pre-synthesis.” The 

molar ratio of aniline to graphene oxide cross-linked was 1:0.05.  

3.8.2. FT-IR Characterization Results 

FT-IR was used to determine the extent of embedding the graphene oxide into the 

Pani matrix. It was also used to ensure aniline was still polymerized through the process 
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and no un-desired reactions occurred. Figure 3.34 shows the FT-IR spectrum of both 

synthesis methods of Pani-GO cross-linked along with the control sample of Pani-GO, 

which contains an un-treated form of graphene oxide. 

 

Figure 3.34 FT-IR SPectra of Pani-GO (C.L.) “Pre” and “Post” 

The spectrum shows that the pre-synthesis and post-synthesis composites possess 

identical FT-IR spectra. Signals at 1300, 1450, and 1560 cm
-1

 represent signals from 

functional groups of Polyaniline. The peak at 1000 cm
-1

 shows the carbonyl group which 

proves the graphene oxide complex is present in the Polyaniline matrix.  

3.8.3. BET Surface Area Measurements 

BET theory was utilized with N2 adsorption isotherms in order to determine the 

surface area of the Polyaniline-graphene oxide cross-linked composites. Table 3.9 shows 

and compares the surface area of these composites along with untreated Polyaniline and 
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Pani-GO composites. The pre-synthesis sample had a critical reduction in surface area to 

1.1 m
2
/g. The post-synthesis method reached a surface area of 36.6 m

2
/g.  

Table 3.9 BET Surface Area of Pre-Synthesis and Post-Synthesis 

Sample Name BET SSA (m
2
/g) 

Polyaniline 24 

Pani-GO 31.1 

GO C.L. 324 

Pani-GO C.L. 36.6 

 

3.8.4. H2 Sorption at 77 K of Pani-GO C.L.  

Hydrogen storage capacity was measured using Autosorb1 at liquid nitrogen 

temperature. Figure 3.35 shows the adsorption isotherms of the two methods of 

synthesizing Pani-GO cross-linked along with Pani-GO untreated as a control sample. 

Figure 3.35 shows the storage capacity for the post-synthesis and pre-synthesis Pani-GO 

cross-linked samples were 0.034 wt. % and 0.005 wt. %. The untreated complex has a 

storage capacity of 0.015 wt. %. The storage capacity was doubled by cross-linking the 

graphene oxide before adding to the Polyaniline complex.  
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Figure 3.35 H2 Adsorption of Pre- and Post-Synthesis Pani-GO C.L. 

3.8.5. Summary of Pani-GO C.L. Results 

The goal was to incorporate a higher surface area graphene oxide framework into 

the Polyaniline matrix in hopes of increasing the hydrogen storage capacity. FT-IR 

verified sufficient impregnation of graphene oxide into the polymeric matrix. BET theory 

determined that the “post-synthesis” method yielded a product with sustained surface 

area. Hydrogen sorption measurements proved that the product of Pani-GO cross-linked 

with ethanol increased the hydrogen storage from 0.015 wt. % to 0.034 wt. %, which is a 

dramatic improvement. However, this is a dramatic reduction compared to the capacity of 

graphene oxide cross-linked (without Pani), which is a storage of 0.33 wt. %. This 

decrease is due to the major reduction in surface area caused when adding the graphene 

oxide framework to the polymeric matrix.  
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3.9. Literature Comparison 

To gain a better understanding of our research results it is important to compare 

them with previously published results of similar materials. Materials like graphene and 

polyaniline have already been well-established in literature with data on their hydrogen 

storage properties. Tables 3.10 and 3.11 compare the hydrogen storage values of 

graphene and polymeric materials, respectively, compared to literature values.  

Table 3.10 Hydrogen Storage (77 K) of Graphene materials 

Sample Name H2 wt. % 

Graphene (lit.) 0.6 [10] 

rGO 0.02 

rGO-Pt 0.03 

rGO-Ca 0.01 

 

Table 3.11 Hydrogen Storage (77 K) of Polymeric Materials 

Sample Name H2 wt. % 

Pani (lit.) 0.10 [15] 

Pani 0.05 

Pani-G 0.019 

Pani-GO 0.016 

Pani-GO C.L. 0.034 
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Table 3.10 shows the literature value of hydrogen storage of graphene is 0.6 

weight %. Differences between storage capacities of graphene from Dr. Dillon’s research 

group and the reduced graphene oxide synthesized in our laboratory are probably due to 

surface area discrepancies [10]. Literature graphene has a surface area of 360 m
2
/g 

compared to the graphene synthesized in our lab having only an area on the order of 10 

m
2
/g; this occurred due to difficulties of agglomeration when synthesizing graphene [10]. 

The platinum and calcium doped samples had a storage capacity of 0.03 and 0.01, 

respectively. This reduction in hydrogen storage at 77 K is probably due to the reduction 

in surface area occurring after doping the graphene samples. Surface area and pore 

volume are the major factors of hydrogen storage capacity at 77 K. Table 3.11compares 

polyaniline in literature from Dr. Germain’s research group to polyaniline-graphene or 

graphene oxide composites [15]. The reduction from literature values for the hydrogen 

storage capacity most likely occurs because of the decrease in surface area when adding 

the graphene and graphene oxide materials to the polymer substrate. Our research 

suggests that adding graphene and graphene oxide materials to the polyaniline substrate, 

the hydrogen storage capacity values are less than values found in literature for pure 

polyaniline.  
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Chapter 4. Conclusion and Recommendation for Future Work  

4.1. Overview 

The objective of this thesis was to synthesize high surface area graphene-based 

complexes doped with metals in order to optimize hydrogen storage. Three aspects of 

hydrogen storage were dealt with in this thesis. Physisorption was optimized by 

attempting to increase the surface area of the graphene and graphene oxide complexes. 

Chemisorption was introduced when doping the materials with platinum nanoparticles, 

which chemically bond and disassociate hydrogen molecules for easier adsorption into 

the pores of the material. The adsorption enthalpy was also adjusted by introducing 

calcium doping to increase the attraction of the surface of the adsorbent to the hydrogen 

molecules of the adsorbate. Investigation and optimization of these three methods was 

pursued in order to determine an optimal storage material for hydrogen adsorption.  

4.2. Physisorption  

Physisorption optimization primarily consisted of increasing the accessible 

surface area and pores of the material for efficient hydrogen adsorption. Methods 

investigated to perform this task were exfoliation of graphene/graphene oxide and cross-

linking of graphene oxide using diboronic acid spacers. Exfoliation of graphene oxide via 

platinum particles caused an increase of the surface area from 18.8 m
2
/g to 65.2 m

2
/g 
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using a 1 weight % ratio of platinum precursor. Graphene was not exfoliated by the 

platinum particles and remained an agglomerated surface area of 11 m
2
/g. However, this 

exfoliation of graphene oxide did not cause an increase in hydrogen storage. The storage 

capacity at 77 K decreased in comparison with the untreated sample of graphene oxide. 

Thus it can be stated that the chemisorption component of platinum nanoparticles did not 

have a measurable effect on the hydrogen capacity of the samples.  

Cross-linking of graphene oxide using diboronic acid spacers with various 

solvents via a solvothermal reaction was investigated. It was determined that ethanol was 

the most optimal solvent for the highest increase in surface area, which was 18.8 m
2
/g to 

324.2 m
2
/g. This directly resulted in an increase of hydrogen storage at 77 K from 0.18 

wt. % to 0.33 wt. %. This is the highest hydrogen storage material that was developed in 

this research. It is also the material with the highest surface area of 324 m
2
/g.  

4.3. Adsorption Enthalpy  

Calcium doping was performed on the grapheme and grapheme oxide materials 

for the purpose of increasing the adsorption enthalpy. The adsorption enthalpy measures 

the attraction between the hydrogen molecules and the surface of the adsorbent. The 

desired range for the adsorption enthalpy is 15 – 20 kJ/mol. Calcium doping of grapheme 

resulted in very inconsistent results with enthalpies in the negative realm. This is due to 

its extremely low storage capacity at 77 and 87 K. Calcium doped grapheme oxide 

reached higher enthalpies at a maximum of 6 kJ/mol. This is more promising than 

grapheme, although still not in the desired range (15 – 20 kJ/mol) for room temperature 

storage.  
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4.4. Polymeric Complexes  

Various samples of grapheme and grapheme oxide were embedded into a 

polyaniline matrix in hopes of increasing the adsorption capacities of the materials. It 

seemed that polyaniline was reducing the surface area and accessible pores of the 

grapheme/grapheme oxide complexes which caused a reduction of the hydrogen storage 

capacity. The most optimum storage material was obtained when the cross-linked 

grapheme oxide framework was synthesized with polyaniline to form a composite 

material. This material reached a capacity of 0.033 weight %, which is an increase from 

pure polyaniline, yet still distant from DOE targets for the year 2015. Room temperature 

storage of Pani-graphene was found to saturate at 0.6 weight %. This is also an 

improvement from Pani (untreated), yet still distant from the DOE targets. 

4.5. Future Work  

The most promising and direct method to reach hydrogen storage at room 

temperature is to investigate the adsorption enthalpy of a material. The adsorption 

enthalpy dictates at what temperature the material will most adsorb hydrogen. The ideal 

range for adsorption at 298 K of hydrogen is 15 – 20 kJ/mol. Computational works state 

that calcium atoms have the ability to increase the adsorption enthalpy to this range. The 

complexes doped with calcium in this thesis only had an increase to 6 kJ/mol, due to 

insufficient covering of calcium atoms or aggregation of the calcium atoms on the surface 

of the material. Finding a method to sufficiently dope the calcium atoms across the 

surface of a carbon-based material will lead to a higher adsorption enthalpy of hydrogen 

interaction. Literature reports computational studies on utilizing boron as anchoring 
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points for calcium doping. Problems arise in determining a synthesis route for the 

placement of the boron atoms in the specific anchoring points on the surface of the 

complex.  
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